如图1所示,t=0时,质量为0.5kg的物体从倾角的斜面上A点由静止开始下滑,经过B点后进入水平面(经过B点前后速度大小不变),最后停在C点。运动过程中速度的大小随时间的关系如图2所示(重力加速度g=10 m/s2,sin37°=0.6,cos 37°=0.8)求:(1)物体在斜面上的加速度和在水平面上的加速度;(2)经过多长时间物体恰好停在C点?(3)物体通过的总路程是多少?
甲、乙两物体相距s,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。甲物体在前,初速度为v1,加速度大小为a1。乙物体在后,初速度为v2,加速度大小为a2且知v1<v2,但两物体一直没有相遇,求甲、乙两物体在运动过程中相距的最小距离为多少?
如图所示,两个质量均为m的小球用三条等长的不计质量的细线a、b、c悬挂,在两球上分别作用沿水平方向大小都等于mg的力F处于平衡状态,现突然剪断细线c,经过一段时间两球再次处于平衡,求此时线a、b的张力分别为多大?
一物体做匀加速直线运动,在 2s 内通过的位移为 6m,在紧接着的 1s 内通过的位移也为 6m。求物体运动的加速度的大小。
如图所示,已知倾角为θ=45°、高为h的斜面固定在水平地面上.一小球从高为H(h<H<h)处自由下落,与斜面做无能量损失的碰撞后水平抛出.小球自由下落的落点距斜面左侧的水平距离x满足一定条件时,小球能直接落到水平地面上.(1)求小球落到地面上的速度大小;(2)求要使小球做平抛运动后能直接落到水平地面上,x应满足的条件;(3)在满足(2)的条件下,求小球运动的最长时间.
如图所示,固定在水平地面上的工件,由AB和BD两部分组成,其中AB部分为光滑的圆弧,AOB=37o,圆弧的半径R=0.5m,圆心O点在B点正上方;BD部分水平,长度为0.2m,C为BD的中点。现有一质量m=lkg,可视为质点的物块从A端由静止释放,恰好能运动到D点。(g=10m/s2,sin37o=0.6,cos37o=0.8)求:(1)为使物块恰好运动到C点静止,可以在物块运动到B点后,对它施加一竖直向下的恒力F,F应为多大?(2)为使物块运动到C点时速度为零,也可先将BD部分以B为轴向上转动一锐角,应为多大?(假设B处有一小段的弧线平滑连接,物块经过B点时没有能量损失)(3)接上一问,求物块在BD板上运动的总路程。