在某介质中形成一列简谐波,t=0时刻的波形如图中的实线所示。其中质点O的平衡位置在坐标原点,质点B的平衡位置在距坐标原点1m处,质点P的平衡位置在距坐标原点7m处,(1). 若波向右传播,零时刻刚好传到B点,且再经过0.6 s,P点也开始起振,试求:① P点开始起振的方向②该列波的波速③从t=0时刻起到P点第一次达到波峰时止,质点O所经过的路程S0为多少?(2). 若该列波的传播速度大小为20 m/s,且波形中由实线变成虚线需要经历0.525 s时间,则该列波的传播方向如何?
如图所示,质量为m的足够长的“[”金属导轨abcd放在倾角为θ的光滑绝缘斜面上,bc段电阻为R,其余段电阻不计。另一电阻为R、质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PbcQ构成矩形。棒与导轨间动摩擦因数为μ,棒左侧有两个固定于斜面的光滑立柱。导轨bc段长为L,以ef为界,其左侧匀强磁场垂直斜面向上,右侧匀强磁场方向沿斜面向上,磁感应强度大小均为B。在t=0时,一沿斜面方向的作用力F垂直作用在导轨的bc边上,使导轨由静止开始沿斜面向下做匀加速直线运动,加速度为a。(1)请通过计算证明开始一段时间内PQ中的电流随时间均匀增大。(2)求在电流随时间均匀增大的时间内棒PQ横截面内通过的电量q和导轨机械能的变化量△E。(3)请在F-t图上定性地画出电流随时间均匀增大的过程中作用力F随时间t变化的可能关系图,并写出相应的条件。(以沿斜面向下为正方向)
如图所示,半径R=0.6m的光滑圆弧轨道BCD与足够长的粗糙轨道DE在D处平滑连接,O为圆弧轨道BCD的圆心,C点为圆弧轨道的最低点,半径OB、OD与OC的夹角分别为53°和37°。将一个质量m=0.5kg的物体(视为质点)从B点左侧高为h=0.8m处的A点水平抛出,恰从B点沿切线方向进入圆弧轨道。已知物体与轨道DE间的动摩擦因数=0.8,重力加速度g取10m/s2,sin37°="0." 6,cos37°=0.8。求:(1)物体水平抛出时的初速度大小v0;(2)物体在轨道DE上运动的路程s。
冰壶在水平而上某次滑行可简化为如下过程:如图所示,运动员给冰壶施加一水平恒力将静止于A点的冰壶(视为质点)沿直线AD推到B点放手,最后冰壶停于D点。已知冰壶与冰面间的动摩擦因数为,AB=CD=、BC=7,重力加速度为g。求:(1)冰壶经过B点时的速率;(2)冰壶在CD段与在AB段运动的时间之比。
某地区多发雾霾天气,PM2.5浓度过高,为防控粉尘污染,某同学设计了一种除尘方案,用于清除带电粉尘.模型简化如图所示,粉尘源从A点向水平虚线上方(竖直平面内)各个方向均匀喷出粉尘微粒,每颗粉尘微粒速度大小均为v=10 m/s,质量为m=5×10-10 kg,电荷量为q=+1×10-7 C,粉尘源正上方有一半径R=0.5 m的圆形边界匀强磁场,磁场的磁感应强度方向垂直纸面向外且大小为B=0.1 T的,磁场右侧紧靠平行金属极板MN、PQ,两板间电压恒为U0,两板相距d=1 m,板长l=1 m。不计粉尘重力及粉尘之间的相互作用,假设MP为磁场与电场的分界线。(已知,,若)求(1)微粒在磁场中的半径r并判断粒子出磁场的速度方向;(2)若粉尘微粒100%被该装置吸收,平行金属极板MN、PQ间电压至少多少?(3)若U0=0.9 V,求收集效率。(4)若两极板间电压在0~1.5 V之间可调,求收集效率和电压的关系。
如图甲所示,足够长的光滑平行金属导轨MN、PQ竖直放置,其宽度L=1 m,一匀强磁场垂直穿过导轨平面,导轨的上端M与P之间连接一阻值为R=0.40 Ω的电阻,质量为m=0.01 kg、电阻为r=0.30 Ω的金属棒ab紧贴在导轨上.现使金属棒ab由静止开始下滑,下滑过程中ab始终保持水平,且与导轨接触良好,其下滑距离x与时间t的关系如图乙所示,图象中的OA段为曲线,AB段为直线,导轨电阻不计,g=10 m/s2(忽略ab棒运动过程中对原磁场的影响),试求:(1)当t=1.5 s时,重力对金属棒ab做功的功率;(2)金属棒ab从开始运动的1.5 s内,电阻R上产生的热量;(3)磁感应强度B的大小.