已知万有引力常量G,地球半径R,月球与地球间距离r,同步卫星距地面的高度h,月球绕地球的运转周期T1,地球自转周期T2,地球表面的重力加速度g。某同学根据以上条件,提出一种估算地球质量M的方法:同步卫星绕地心做圆周运动,由得(1)请判断上面的结果是否正确,并说明理由。如不正确,请给出正确的解法和结果。(2)请根据已知条件再提出一种估算地球质量的方法,并解得结果。
一个静止的质量为M的放射性原子核发生衰变,放出一个质量为m、速度大小为v的α粒子,设衰变过程中释放的核能全部转化为新原子核和α粒子的动能,真空中光速为c.求: ① 衰变后新原子核速度大小为多少? ② 衰变过程中质量亏损为多少?
新疆达坂城风口的风速约为υ = 20m/s,设该地空气的密度为ρ = 1.4kg/m3,若把通过横截面积S = 20m2的风能的50%转化为电能,利用上述已知量推导计算电功率的公式,并求出发电机电功率的大小。
1990年3月,紫金山天文台将该台发现的2752号小行星命名为“吴健雄星”。将其看作球形,直径为32km,它的密度和地球密度相近。若在此小行星上发射一颗卫星环绕其表面附近运转。求此卫星的环绕速度。(地球半径取6400km,地球的第一宇宙速度取)
如图所示,在坐标系xoy的第一、第三象限内存在相同的匀强磁场,磁场方向垂直于xoy面向里;第四象限内有沿y轴正方向的匀强电场,电场强度大小为E,一质量为m、带电量为+q的粒子自y轴的P点沿x轴正方向射入第四象限,经x轴上的Q点进入第一象限,随即撤去电场,以后仅保留磁场。已知OP=d,OQ=2d,不计粒子重力。 (1)求粒子过Q点时速度的大小和方向。 (2)若磁感应强度的大小为一定值B0,粒子将以垂直y轴的方向进入第二象限,求B0; (3)若磁感应强度的大小为另一确定值,经过一段时间后粒子将再次经过Q点,且速度与第一次过Q点时相同,求该粒子相邻两次经过Q点所用的时间。
如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中。质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上。初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。整个运动过程中导体棒始终与导轨垂直并保持良好接触。已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行。 (1)求初始时刻通过电阻R的电流I的大小和方向; (2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a; (3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q。