一种测定风作用力的仪器原理如图所示。它的细长丝线一端固定于O点,另一端悬挂着一个质量为m="1" kg的金属球。无风时,丝线自然下垂;当受到沿水平方向吹来的风的作用时,丝线将偏离竖直方向一定角度θ,风力越大,偏角越大。若某时刻丝线与竖直方向的夹角θ=37°,试求此时金属球所受风力的大小。(取g="10" m/s2,已知sin37°=0.6、cos37°=0.8)
(12分)“嫦娥工程”计划在第二步向月球发射一个软着陆器,在着陆器附近进行现场勘测.已知地球的质量约为月球质量的80倍,地球的半径约为月球半径的4倍,地球表面的重力加速度为g地=10m/s2,地球的第一宇宙速度为7.9km/s。假设将来测得着陆器撞击月球表面后又竖直向上弹起,并且经过2s钟后落回到月球表面.试求:(1)它弹起时的初速度v0。(2)月球的第一宇宙速度是多少。(不考虑地球和月球的自转;结果保留两位有效数字).
(15分)我国发射的“嫦娥一号”卫星发射后首先进入绕地球运行的“停泊轨道”,通过加速再进入椭圆“过渡轨道”,该轨道离地心最近距离为L1,最远距离为L2,卫星快要到达月球时,依靠火箭的反向助推器减速,被月球引力“俘获”后,成为环月球卫星,最终在离月心距离L3的“绕月轨道”上飞行,如图所示.已知地球半径为R,月球半径为r,地球表面重力加速度为g,月球表面的重力加速度为,求: (1)卫星在“停泊轨道”上运行的线速度大小; (2)卫星在“绕月轨道”上运行的线速度大小; (3)假定卫星在“绕月轨道”上运行的周期为T,卫星轨道平面与地月连心线共面,求在该一个周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间(忽略月球绕地球转动对遮挡时间的影响).
如图所示,一足够长的固定斜面倾角,两物块A、B的质量分别为、分别为1kg和4kg,它们与斜面之间的动摩擦因数均为。两物块之间的轻绳长,轻绳承受的最大张力T=12N,作用于B上沿斜面向上的力F逐渐增大,使A、B一起由静止开始沿斜面向上运动,。(,) ⑴某一时刻轻绳被拉断,求此时外力F的大小; ⑵若轻绳拉断前瞬间A、B的速度为3m/s,绳断后保持外力F不变,求当A运动到最高点时,A、B之间的距离。
如图所示,倾角为θ的斜面处于竖直向下的匀强电场中,在斜面上某点以初速度为v0水平抛出一个质量为m的带正电小球,小球在电场中受到的电场力与小球所受的重力相等。设斜面足够长,地球表面重力加速度为g,不计空气的阻力,求: (1)小球落到斜面所需时间t; (2)小球从水平抛出至落到斜面的过程中电势能的变化量ΔE。
如图所示,轻弹簧的两端与质量均为2m的B、C两物块固定连接,静止在光滑水平面上,物块C紧靠挡板但不粘连.另一质量为m的小物块A以速度v0从右向左与B发生弹性正碰,碰撞时间极短可忽略不计.(所有过程都在弹簧弹性限度范围内)求: (1)A、B碰后瞬间各自的速度; (2)弹簧第一次压缩最短与第一次伸长最长时弹性势能之比.