如图所示,质量20kg的物体从光滑斜面上高度m处释放,到达底端时水平进入水平传送带(不计斜面底端速度大小的损失,即在斜面底端速度方向迅速变为水平,大小不变),传送带由一电动机驱动着匀速向左转动,速率为3 m/s.已知物体与传送带间的动摩擦因数0.1. 物体冲上传送带后就移走光滑斜面.(g取10 m/s2).若两皮带轮AB之间的距离是6 m,物体将从哪一边离开传送带? 若皮带轮间的距离足够大,从M滑上到离开传送带的整个过程中,求M和传送带间相对位移.
如图所示,炽热金属丝上发射的电子(假设刚离开金属丝时的速度为0),经电压U1="4500" V加速后,以v0的速度垂直进入偏转电场,并能从偏转电场离开.偏转电场两极板间的电压U2="180" V,距离d="2" cm,板长L="8" cm.电子的质量m=0.9×10-30kg,电子的电荷量e=1.6×10-19C.求: (1)v0的大小; (2)电子在离开偏转电场时的纵向偏移量.
如图所示,一个质量m="30" g,带电荷量q=-1.5×10-8C的半径极小的小球,用绝缘丝线悬挂在水平方向的匀强电场中.当小球静止时,测得悬线与竖直方向成45°夹角.求: (1)小球受到的电场力的大小和方向; (2)该电场的电场强度的大小和方向.
如图所示,无限宽广的匀强磁场分布在xoy平面内,x轴上下方磁场均垂直xoy 平面向里,x轴上方的磁场的磁感应强度为B,x轴下方的磁场的磁感应强度为4B/3。现有一质量为m,电量为-q带负电粒子以速度v0从坐标原点O沿y方向进入上方磁场。在粒子运动过程中,与x轴交于若干点。不计粒子的重力。求: (1)粒子在x轴上方磁场做匀速圆周运动半径r1 (2)如把x轴上方运动的半周与x轴下方运动的半周称为一周期的话,则每经过一周期,在x轴上粒子右移的平均速度。 (3)在与x轴的所有交点中,粒子两次通过同一点的坐标位置。
电路如图所示,电源电动势E=28 V,内阻r=2 Ω,电阻R1=12 Ω,R2=R4=4Ω,R3=8Ω,C为平行板电容器,其电容C=3.0 pF,虚线到两极板距离相等,极板长l=0.20 m,两极板的间距d=1.0×10-2 m。 (1)若开关S处于断开状态,则当其闭合后,求流过R4的总电量为多少? (2)若开关S断开时,有一带电微粒沿虚线方向以v0=2.0 m/s的初速度射入C的电场中,刚好沿虚线匀速运动,问:当开关S闭合后,此带电微粒以相同初速度沿虚线方向射入C的电场中,能否从C的电场中射出?(要求写出计算和分析过程,g取10m/s2)
如图所示,在倾角为37°的固定金属导轨上,放置一个长L=0.4m、质量m=0.3kg的导体棒,导体棒垂直导轨且接触良好。导体棒与导轨间的动摩擦因数μ=0.5。金属导轨的一端接有电动势E=4.5V、内阻r=0.50Ω的直流电源,电阻R=2.5Ω,其余电阻不计,假设最大静摩擦力等于滑动摩擦力。现外加一与导体棒垂直的匀强磁场,(sin37°=0.6,cos37°=0.8 g=10m/s2)求: (1)使导体棒静止在斜面上且对斜面无压力,所加磁场的磁感应强度B的大小和方向; (2)使导体棒静止在斜面上,所加磁场的磁感应强度B的最小值和方向。