如图所示,空间存在着强度E=2.5×102N/C方向竖直向上的匀强电场,在电场内一长为L=0.5m的绝缘细线,一端固定在O点,一端拴着质量m=0.5kg、电荷量q=4×10-2C的小球.现将细线拉直到水平位置,使小球由静止释放,当小球运动最高点时细线受到的拉力恰好达到它能承受的最大值而断裂.取g=10m/s2.求:(1)小球的电性;(2)细线能承受的最大拉力;(3)当小球继续运动后与O点水平方向距离为L时,小球距O点的高度.
在竖直的井底,将一物块以11 m/s的速度竖直的向上抛出,物体冲过井口时被人接住,在被人接住前1s内物体的位移是4 m,位移方向向上,不计空气阻力,g取10 m/s2,求:(1)物体从抛出到被人接住所经历的时间;(2)此竖直井的深度.
如下图所示,A、B两物体叠放在水平地面上,已知A、B的质量分别为 mA=10 kg, mB=20 kg,A、B之间,B与地面之间的动摩擦因数均为μ=0.5.一轻绳一端系住物体A,另一端系于墙上,绳与竖直方向的夹角为37°,今欲用外力将物体B匀速向右拉出,求所加水平力F的大小,并画出A、B的受力分析图.(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)
如右图所示,匀强电场E=4V/m,方向水平向左,匀强磁场 B=2T,方向垂直纸面向里。m=1g带正电的小物块A,从M点沿绝缘粗糙的竖直壁无初速下滑,它滑行0.8m到N点时就离开壁做曲线运动,在P点A瞬时受力平衡,此时其速度与水平方向成45°角。设P与M的高度差为1.6m。(g取10m/s2) 求:(1)A沿壁下滑时摩擦力做的功;(2)P与M的水平距离。
在竖直平面内有一圆形绝缘轨道,半径为R=0.4m,匀强磁场垂直于轨道平面向里,一质量为m=1×10-3kg、带电量为q=+3×10-2C的小球,可在内壁滑动,如图甲所示,开始时,在最低点处给小球一个初速度v0,使小球在竖直平面内逆时针做圆周运动,如图乙(a)是小球在竖直平面内做圆周运动的速率v随时间变化的情况,图乙(b)是小球所受轨道的弹力F随时间变化的情况,结合图象所给数据,(取g=10m/s2) 求:(1)磁感应强度的大小;(2)初速度v0的大小。
如右图所示的电路中,电源电动势E=6.0V,内阻r=0.6Ω,电阻R2=0.5Ω,当开关S断开时;电流表的示数为1.5A,电压表的示数为3.0V,试求:(1)电阻R1和R3的阻值;(2)当S闭合后,电压表的示数、以及R2上消耗的电功率。