图中MN表示真空室中垂直于纸面的平板,它的一侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度大小为B.一带电粒子从平板上的狭缝O处以垂直于平板的初速v射入磁场区域,最后到达平板上的P点.已知B、m、 v以及P到O的距离l,不计重力,求此粒子的电量q.
如图所示,空间存在水平向右的匀强电场. 在竖直平面内 建立平面直角坐标系,在坐标系的一象限内固定绝缘光滑的半径为R的1/4圆周轨道AB,轨道的两端在坐标轴上。质量为m的带正电的小球从轨道的A端由静止开始滚下,已知重力为电场力的2倍,求:(1)小球在轨道最低点B时对轨道的压力;(2)小球脱离B点后开始计时,经过多长时间小球运动到B点的正下方?并求出此时小球距B的竖直高度h是多大?
如图所示,质量为m的导体棒MN静止在水平导轨上,导轨宽度为L,导体棒离开左侧连接电源的导线距离为d,已知电源的电动势为E,内阻为r,导体棒的电阻为R,其余部分与接触电阻不计。磁场方向垂直导体棒斜向上与水平面的夹角为,磁感应强度为B,求:(1)导体棒和电源围成的回路的磁通量的大小(2)轨道对导体棒的支持力和摩擦力。
在如图所示的电路中,电源电动势E=15V,内阻r=5Ω,电阻R1、R2、R3的阻值均为10Ω,S为单刀三掷电键,求(1)电键S接A时电压表的读数(2)电键S接B时电源的输出功率(3)电键S接C时电源的效率
如图甲所示是电容器充、放电电路.配合电流传感器,可以捕捉瞬间的电流变化,并通过计算机画出电流随时间变化的图象.实验中选用直流8 V电源,电容器选用电解电容器.先使单刀双掷开关S与1端相连,电源向电容器充电,这个过程可瞬间完成.然后把单刀双掷开关S掷向2端,电容器通过电阻R放电,传感器将电流传入计算机,图象上显示出放电电流随时间变化的I-t曲线,如图乙所示.以下说法正确的是( )
如图所示,绝缘倾斜固定轨道上A点处有一带负电,电量大小q=0.4C质量为0.3kg的小物体,斜面下端B点有一小圆弧刚好与一水平放置的薄板相接,AB点之间的距离S=1.92m,斜面与水平面夹角θ=37°,物体与倾斜轨道部分摩擦因数为0.2,斜面空间内有水平向左,大小为E1=10V/m的匀强电场,现让小物块从A点由静止释放,到达B点后冲上薄板,薄板由新型材料制成,质量M=0.6kg,长度为L,物体与薄板的动摩擦因数μ=0.4,放置在高H=1.6m的光滑平台上,此时,在平台上方虚线空间BCIJ内加上水平向右,大小为E2=1.5V/m的匀强电场,经t=0.5s后,改成另一水平方向的电场E3,在此过程中,薄板一直加速,到达平台右端C点时,物体刚好滑到薄板右端,且与薄板共速,由于C点有一固定障碍物,使薄板立即停止,而小物体则以此速度V水平飞出,恰好能从高h=0.8m的固定斜面顶端D点沿倾角为53°的斜面无碰撞地下滑,(重力加速度g=10m/s2,sin37°=,cos37°=)求:(1)小物体水平飞出的速度v及斜面距平台的距离X;(2)小物体运动到B点时的速度VB; (3)电场E3的大小和方向,及薄板的长度L