如图所示,光滑水平面上,质量为2m的小球B连接着轻质弹簧,处于静止;质量为m的小球A以初速度v0向右匀速运动,接着逐渐压缩弹簧并使B运动,过一段时间,A与弹簧分离,设小球A、B与弹簧相互作用过程中无机械能损失,弹簧始终处于弹性限度以内。求当弹簧被压缩到最短时,弹簧的弹性势能E.
两个带电量均为+q小球,质量均为m,固定在轻质绝缘直角框架OAB(框架的直角边长均为L)的两个端点A、B上,另一端点用光滑铰链固定在O点,整个装置可以绕垂直于纸面的水平轴在竖直平面内自由转动。(1)若施加竖直向上的匀强电场E1,使框架OA边水平、OB边竖直并保持静止状态,则电场强度E1多大?(2)若改变匀强电场的大小和方向(电场仍与框架面平行),为使框架的OA边水平、OB边竖直(B在O的正下方),则所需施加的匀强电场的场强E2至少多大?方向如何?(3)若框架处在匀强电场E1中OA边水平、OB边竖直并保持静止状态时,对小球B施加一水平向右的恒力F,则小球B在何处时速度最大?最大值是多少?
一个“┌”型细玻璃管A、B两端开口,水平段内有一段长为5cm的水银柱,初始时长度数据如图所示。现将玻璃管B端封闭,然后将下端A插入大水银槽中,整个过程温度不变,稳定后竖直管内水银面比大水银槽面低5cm,已知大气压强为75cmHg。求:(1)稳定后玻璃管B端水平段内被封闭气体的压强为多少?(2)竖直管A端插入水银槽的深度h。
某研究性学习小组用加速度传感器探究物体从静止开始做直线运动的规律,得到了质量为1.0kg的物体运动的加速度随时间变化的关系图线,如图所示。(1)请简要说明物体的运动情况;(2)估算物体在t=10.0s时的速度大小;(3)估算从t=10.0s到t=12.0s的时间内合外力对物体做的功。
(共18分)如图所示,一个质量为m,带电量为+q的微粒,从a点以大小为v0的初速度竖直向上射入水平方向的匀强电场中。微粒通过最高点b时的速度大小为2v0方向水平向右。求:(1)该匀强电场的场强大小E;(2)a、b两点间的电势差Uab;(3)该微粒从a点到b点过程中速率的最小值vmin。
(共18分)如图所示,在一光滑的长直轨道上,放着若干完全相同的小木块,每个小木块的质量均为m,且体积足够小均能够看成质点,其编号依次为0、1、2、……n……,相邻各木块之间的距离分别记作:。在所有木块都静止的初始条件下,有一个沿轨道方向水平向右的恒力F持续作用在0号小木块上,使其与后面的木块连接发生碰撞,假如所有碰撞都是完全非弹性的(碰后合为一体共速运动)。求:(1)在0号木块与1号木块碰撞后瞬间,其共同速度的表达式;(2)若F=10牛,米,那么在2号木块被碰撞后的瞬间,系统的总动能为多少?(3)在F=10牛,米的前提下,为了保持正在运动的物块系统在每次碰撞之前的瞬间其总动能都为一个恒定的数值,那么我们应该设计第号和第n号木块之间距离为多少米?