如图所示,坐标系xoy位于竖直平面内,在该区域内有场强E=12N/C、方向沿x轴正方向的匀强电场和磁感应强度大小为B =2T,沿水平方向且垂直于xoy平面指向纸里的匀强磁场.一个质量m=410-5kg,电量q ="2.5" 1-5C带正电的微粒,在xoy平面内做匀速直线运动,运动到原点o时,撤去磁场,经一段时间后,带电微粒运动到了x轴上的P点.取g=10 m/s2,求:(1)P点到原点0的距离;(2)带电微粒由原点0运动到P点的时间.
如图所示,水平轨道上,轻弹簧左端固定,自然状态时右端位于P点。现用一质量m=0.1kg的小物块(视为质点)将弹簧压缩后释放,物块经过P点时的速度v0=18m/s,经过水平轨道右端Q点后恰好沿半圆轨道的切线进入竖直固定的圆轨道,最后滑上质量M=0.9kg的长木板(木板足够长,物块滑上去不会从木板上掉下来)。已知PQ间的距离l=1m,竖直半圆轨道光滑且半径R=1m,物块与水平轨道间的动摩擦因数µ1=0.15,与木板间的动摩擦因数µ2=0.2,木板与水平地面间的动摩擦因数µ3=0.01,取g=10m/s2。 (1)判断物块经过Q点后能否沿圆周轨道运动; (2)求木板滑行的最大距离x。
如图甲所示,平行金属导轨竖直放置,导轨间距为L=1m,上端接有定值电阻R1=3Ω,下端接有电阻R2=6Ω,虚线OOˊ下方是垂直于导轨平面的匀强磁场。现将质量m=0.1kg、电阻不计的金属杆MN从OOˊ上方某处垂直导轨放置后由静止释放,杆下落0.2m过程中加速度a与下落距离h的关系图象如图乙所示(金属杆运动过程中始终与导轨保持良好接触)。求:(1)磁感应强度B;(2)杆下落0.2m过程中通过电阻R2的电荷量q;
如图甲所示,一固定的矩形导体线圈水平放置,线圈的两端接一只小灯泡,在线圈所在空间内存在着与线圈平面垂直的均匀分布的磁场。已知线圈的匝数n=100匝,电阻r=1.0Ω,所围成矩形的面积S=0.040m2,小灯泡的电阻R=9.0Ω,磁场的磁感应强度随时间按如图乙所示的规律变化,线圈中产生的感应电动势瞬时值的表达式为:计灯丝电阻随温度的变化,求:(1)线圈中产生感应电动势的最大值。(2)小灯泡消耗的电功率。图甲图乙
在水平面上平行放置着两根长度均为L的金属导轨MN和PQ,导轨间距为d,导轨和电路的连接如图所示。在导轨的MP端放置着一根金属棒,与导轨垂直且接触良好。空间中存在竖直向上方向的匀强磁场,磁感应强度为B。将开关S1闭合,S2断开,电压表和电流表的示数分别为U1和I1,金属棒仍处于静止状态;再将开关S2闭合,电压表和电流表的示数分别为U2和I2,金属棒在导轨上由静止开始运动,运动过程中金属棒始终与导轨垂直。设金属棒的质量为m,金属棒与导轨之间的动摩擦因数为μ。忽略导轨的电阻以及金属棒运动过程中产生的感应电动势,重力加速度为g。求:(1)金属棒到达NQ端时的速度大小。(2)金属棒在导轨上运动的过程中,电流在金属棒中产生的热量。
如图甲所示,长为l、相距为d的两块正对的平行金属板AB和CD与一电源相连(图中未画出电源),B、D为两板的右端点。两板间电压的变化如图乙所示。在金属板B、D端的右侧有一与金属板垂直的荧光屏MN,荧光屏距B、D端的距离为l。质量为m、电荷量为e的电子以相同的初速度v0从极板左边中央沿平行极板的直线OO’连续不断地射入。已知所有的电子均能够从金属板间射出,且每个电子在电场中运动的时间与电压变化的周期相等。忽略极板边缘处电场的影响,不计电子的重力以及电子之间的相互作用。求:(1)t=0和t=T/2时刻进入两板间的电子到达金属板B、D端界面时偏离OO’的距离之比。(2)两板间电压U0的最大值。(3)电子在荧光屏上分布的最大范围。