如图所示,质量为M的劈块,其左右劈面的倾角分别为θ1=30°θ2=45°,质量分别为m1=kg和m2=2.0kg的两物块,同时分别从左右劈面的顶端从静止开始下滑,劈块始终与水平面保持相对静止,各相互接触面之间的动摩擦因数均为μ=0.20,求两物块下滑过程中(m1和m2均未达到底端)劈块受到地面的摩擦力。(g=10m/s2)
如图所示,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平导轨上的O点,此时弹簧处于原长.另一质量与B相同的块A从导轨上的P点以初速度v0向B滑行,当A滑过距离l时,与B相碰.碰撞时间极短,碰后A、B粘在一起运动.设滑块A和B均可视为质点,与导轨的动摩擦因数均为μ.重力加速度为g.求:(1)碰后瞬间,A、B共同的速度大小;(2)若A、B压缩弹簧后恰能返回到O点并停止,求弹簧的最大压缩量.
一块质量为M长为L的长木板,静止在光滑水平桌面上,一个质量为m的小滑块以水平速度v0从长木板的一端开始在木板上滑动,直到离开木板,滑块刚离开木板时的速度为.若把此木板固定在水平桌面上,其他条件相同.求:(1)求滑块离开木板时的速度v;(2)若已知滑块和木板之间的动摩擦因数为μ,求木板的长度.
质量为m1=0.10kg和m2=0.20kg两个弹性小球,用轻绳紧紧的捆在一起,以速度v0=0.10m/s沿光滑水平面做直线运动.某一时刻绳子突然断开,断开后两球仍在原直线上运动,经时间t=5.0s后两球相距s=4.5m.求这两个弹性小球捆在一起时的弹性势能.
如图所示,滑块A的质量m=0.01kg,与水平地面间的动摩擦因数μ=0.2,用细线悬挂的小球质量均为m=0.01kg,沿x轴排列,A与第1只小球及相邻两小球间距离均为s=2m,线长分别为L1、L2、L3……(图中只画出三只小球,且小球可视为质点),开始时,滑块以速度v0=10m/s沿x轴正方向运动,设滑块与小球碰撞时不损失机械能,碰撞后小球均恰能在竖直平面内完成完整的圆周运动并再次与滑块正碰,重力加速度g=10m/s2.试求:(1)滑块能与几个小球碰撞?(2)碰撞中第n个小球悬线长Ln的表达式;(3)滑块与第一个小球碰撞后瞬间,悬线对小球的拉力.
如图所示,有n个相同的货箱停放在倾角为θ的斜面上,每个货箱长皆为l,质量皆为m,相邻两货箱间距离为l,最下端的货箱到斜面底端的距离也为l.已知货箱与斜面间的滑动摩擦力与最大静摩擦力相等.现给第1个货箱一初速度v0.使之沿斜面下滑,在每次发生碰撞后,发生碰撞的货箱都粘合在一起运动,当动摩擦因数为μ时,最后第n个货箱恰好停在斜面底端.求:(1)第1个货箱碰撞前在斜面上运动时的加速度大小;(2)整个过程中由于碰撞而损失的机械能.