四年级数学思维训练:整数计算综合
下面是一个叫做“七上八下”的数字游戏.游戏规则是:对一个给定的数,按照由若干个7和8组成的口令进行一连串的变换.口令“7”是指在这个数中插入一个数字,使得新生成的数尽量大;口令“8”是指将这个数中的一个数字去掉,也要使新生成的数尽量大.例如:给出的数是1995,口令是“8→7,”在第一个口令“8”发出后变成995,在第二个口令“7”发出后变成9995.
如果给出数“6595”以及口令“8→7→8→7→8→8”,问:变换后依次得到的6个数的和是多少?
规定运算“☺”为:a☺b=a×b﹣(a+b),请计算:
(1)5☺8;
(2)8☺5;
(3)(6☺5)4;
(4)6☺(5☺4)
计算:100×99﹣99×98+98×97﹣97×96+96×95﹣95×94+…+4×3﹣3×2+2×1.
已知平方差公式:a2﹣b2=(a+b)×(a﹣b),计算:202﹣192+182﹣172+162﹣152+…+22﹣12.
规定:符号“△”为选择两数中较大的数的运算,“▽”为选择两数中较小的数的运算,例如:3△5=5,3▽5=3,请计算:1△2△3▽4△5△6▽7△…▽100.(运算的顺序是从左至右)
观察下面算式的规律:
2000+1991﹣1988﹣1982+1976+1970﹣1964﹣1958+1952+1946﹣1940﹣1934+…
一直这样写下去,那么最后4个自然数分别是哪4个?符号分别是加还是减?算式最终的结果为多少?
从1,2,…,9,10 中任意选取一个奇数和一个偶数,并将两数相乘,可以得到一个乘积,把所有这样的乘积全部加起来,总和是多少?
已知平方差公式:a2﹣b2=(a+b)×(a﹣b),计算:1002+992﹣982﹣972+962+952﹣942﹣932+…+42+32﹣22﹣12.
aΘb表示从a开始依次增加的b个连续自然数的和,例如:4Θ3=4+5+6=15,5Θ4=5+6+7+8=26,请计算:(1)4Θ15;
(2)在算式(□Θ7)Θ11=1056中,方框里的数应该是多少?
定义两种运算:aΩb=a﹣b+1,a∀b=a×b+1,用“Ω”、“∀”和括号填入下面的式子,使得等式成立(不能用别的计算符号):7 3 4 5=3.
现定义四种操作的规则如下:
①“一分为二”:如果一个自然数是偶数,就把它除以2;如果是奇数,就先加上1,然后除以2.例如从16可以得到8,从27可以得到14.
②“丢三落四”:如果一个自然数中包含数字“3”或“4”,就将其划掉,例如从5304可以得到50,从408可以得到8.(不含数字3和4的自然数不能进行“丢三落四”操作)
③“七上八下”:如果一个自然数中包含数字“7”,就将所有“7”移到最左边;如果一个自然数中包含数字“8”,就将所有“8”移到最右边.例如从98707可以得到77908,从802可以得到28.(不含数字7和8的自然数不能进行“七上八下”操作)
④“十全十美”:将一个自然数的个位数字换成0.例如从111可以得到110,从905可以得到900.(个位是0的自然数不能进行“十全十美”操作)
(1)请写出对4176依次进行③①③②④操作后的结果;
(2)从655687开始,最少经过几次操作以后可以得到0?
(3)一个三位数除了“丢三落四”外,其他三个操作各进行一次之后得到的结果是 ;求有多少个这样的三位数?