新课标高三数学抽样方法、用样本估计总体专项训练(河北)
某校有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见.现抽取一个容量为20的样本,其中后勤人员应抽人数为( )
A.3 | B.15 | C.2 | D.5 |
某社区有400个家庭,其中高等收入家庭120户,中等收入家庭180户,低收入家庭100户.为了调查社会购买力的某项指标,要从中抽取一个容量为100的样本记作①;某校高一年级有12名女排球运动员,要从中选出3人调查学习负担情况,记作②;那么,完成上述2项调查应采用的抽样方法是( )
A.①用随机抽样法,②用系统抽样法 |
B.①用分层抽样法,②用随机抽样法 |
C.①用系统抽样法,②用分层抽样法 |
D.①用分层抽样法,②用系统抽样法 |
为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是( )
A.5,10,15,20,25 | B.2,4,8,16,32 |
C.1,2,3,4,5 | D.7,17,27,37,47 |
某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为( )
A.9 | B.18 | C.27 | D.36 |
矩形的长为a,宽为b,其比满足b∶a=≈0.618,这种矩形给人以美感,称为黄金矩形,黄金矩形常应用于工艺品设计中.下面是某工艺厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:
甲批次:0.598 0.625 0.628 0.595 0.639
乙批次:0.618 0.613 0.592 0.622 0.620
根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( )
A.甲批次的总体平均数与标准值更接近 |
B.乙批次的总体平均数与标准值更接近 |
C.两个批次总体平均数与标准值接近程度相同 |
D.两个批次总体平均数与标准值接近程度不能确定 |
为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如下图,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为( )
A.64 | B.54 | C.48 | D.27 |
甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表
甲的成绩 |
|
|
|
|
环数 |
7 |
8 |
9 |
10 |
频数 |
5 |
5 |
5 |
5 |
乙的成绩 |
|
|
|
|
环数 |
7 |
8 |
9 |
10 |
频数 |
6 |
4 |
4 |
6 |
丙的成绩 |
|
|
|
|
环数 |
7 |
8 |
9 |
10 |
频数 |
4 |
6 |
6 |
4 |
s1,s2,s3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )
A.s3>s1>s2 | B.s2>s1>s3 |
C.s1>s2>s3 | D.s2>s3>s1 |
在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )
A.甲地:总体均值为3,中位数为4 |
B.乙地:总体均值为1,总体方差大于0 |
C.丙地:中位数为2,众数为3 |
D.丁地:总体均值为2,总体方差为3 |
一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )
A.57.2,3.6 | B.57.2,56.4 |
C.62.8,63.6 | D.62.8,3.6 |
从某社区150户高收入家庭,360户中等收入家庭,90户低收入家庭中,用分层抽样法选出100户调查社会购买力的某项指标,则三种家庭应分别抽取的户数依次为________.
一个总体分为A、B两层,其个体数之比为4∶1,用分层抽样方法从总体中抽取一个容易为10的样本.已知B层中甲、乙都被抽到的概率为,则总体中的个体数为________
某单位200名职工的年龄分布情况如右图所示,
现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.
某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:
学生 |
1号 |
2号 |
3号 |
4号 |
5号 |
甲班 |
6 |
7 |
7 |
8 |
7 |
乙班 |
6 |
7 |
6 |
7 |
9 |
则以上两组数据的方差中较小的一个为s2=________.
某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91.复核员在复核时,发现有一个数字(茎叶图中的x)无法看清.若记分员计算无误,则数字x应该是________.
|
|
作品A |
|
8 |
8 9 9 |
|
9 |
2 3 x 2 1 4 |
某地区为了解70~80岁老人的日平均睡眠时间(单位:h),随机选择了50位老人进行调查.下表是这50位老人日睡眠时间的频率分布表.
序号 (i) |
分组 (睡眠时间) |
组中值 (Gi) |
频数 (人数) |
频率 (Fi) |
1 |
[4,5) |
4.5 |
6 |
0.12 |
2 |
[5,6) |
5.5 |
10 |
0.20 |
3 |
[6,7) |
6.5 |
20 |
0.40 |
4 |
[7,8) |
7.5 |
10 |
0.20 |
5 |
[8,9) |
8.5 |
4 |
0.08 |
在上述统计数据的分析中,一部分计算见算法流程图(注:符号“←”与“=”的含义相同),则输出的S的值是________.
某企业共有3200名职工,青、老年职工的比例为5∶3∶2,从所有职工中抽取一个样本容易为400的样本,应采用哪些抽样方法更合理?中、青、老年职工应分别抽取多少人?
一个总体中的1000个个体编号为0,1,2,…,999,并依次将其分为10个小组,组号为0,1,2,…,9,要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地得到后面各组的号码,即第k组中抽取的号码的后两位数为x+33k的后两位数.
(1)当x=24时,写出所抽取样本的10个号码;
(2)若所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.
为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:
组别 |
频数 |
频率 |
145.5~149.5 |
1 |
0.02 |
149.5~153.5 |
4 |
0.08 |
153.5~157.5 |
20 |
0.40 |
157.5~161.5 |
15 |
0.30 |
161.5~165.5 |
8 |
0.16 |
165.5~169.5 |
m |
n |
合 计 |
M |
N |
(1)求出表中m,n,M,N所表示的数分别是多少?
(2)画出频率分布直方图
(3)全体女生中身高在哪组范围内的人数最多?