首页 / 高中数学 / 试卷选题

[浙江]2012-2013学年浙江省台州六校高一上学期期中联考数学试卷

已知集合,则(  )

A. B.
C. D.
来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

函数的图像与轴的交点个数为 (  )

A.一个 B.至少一个 C.至多两个 D.至多一个
来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

,则使函数的定义域为且为奇函数的所有的值为(  )

A.1,3 B.-1,1 C.-1,3 D.-1,1,3
来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

,则的值为(  )

A.0   B.2  C.-2  D.0或2
来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

设函数,则方程一定存在根的区间为(  )

A. B. C. D.
来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

函数在区间上的最大值与最小值的和为3,则等于(  )

A. B.4 C.2 D.
来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

若角和角的终边关于轴对称,则  (  )

A. B.
C. D.
来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

已知扇形的周长为12 ,面积为8 ,则扇形圆心角的弧度数为(   )

A.1 B.4 C.1或4 D.2或4
来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

时,函数的图象只可能是  (  )

来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为,值域为的“孪生函数”共有( )

A.10个 B.9个 C.8个 D.4个
来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

函数的定义域为             

来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

计算  =_____________

来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

已知,则的值=             

来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

设函数是定义域R上的奇函数,且当时,则当时, ____________________

来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

已知2kπ+<α<2kπ+ (k∈Z),则为第________象限角.

来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

表示不超过的最大整数,定义函数.则下列结论中正确的有      
①函数的值域为     ②方程有无数个解
③函数的图像是一条直线  ④函数在区间 上是增函数

来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

已知函数 在R上单调递增,则实数的取值范围为________

来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

已知集合
(1)若,全集,求;
(2)若,求实数的取值范围.

来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

已知二次函数满足,且该函数的图像与轴交于点,在轴上截得的线段长为
(1)确定该二次函数的解析式;
(2)当时,求值域。

来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元;当用水超过4吨时,超过部分每吨3.00元。某月甲、乙两户共交水费元,已知甲、乙两户该月用水量分别为吨和吨。
(1)求关于的函数;
(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费。

来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

设函数 定义在上,对于任意实数,恒有,且当时,
(1)求证:,且当时,
(2)求上的单调性.
(3)设集合,且
求实数的取值范围.

来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知

定义:若函数对于其定义域内的某一数,有,则称的一个不动点. 已知函数.
(1)当时,求函数的不动点;
(2)若对任意的实数b,函数恒有两个不动点,求实数的取值范围;
(3)在(2)的条件下,若图象上两个点A、B的横坐标是函数的不动点,且线段AB的中点C在函数的图象上,求实数b的最小值.
(参考公式:若,则线段AB的中点坐标为)

来源:2012-2013学年浙江省台州六校高一上学期期中联考数学试题
  • 题型:未知
  • 难度:未知