2021年广西贵港市中考数学试卷(含答案与解析)
下列命题是真命题的是
A. |
同旁内角相等,两直线平行 |
B. |
对角线相等的四边形是矩形 |
C. |
对角线互相垂直的四边形是菱形 |
D. |
两角分别相等的两个三角形相似 |
某蔬菜种植基地2018年的蔬菜产量为800吨,2020年的蔬菜产量为968吨,设每年蔬菜产量的年平均增长率都为 ,则年平均增长率 应满足的方程为
A. |
|
B. |
|
C. |
|
D. |
|
如图,点 , , , 均在 上,直径 ,点 是 的中点,点 关于 对称的点为 ,若 ,则弦 的长是
A. |
|
B. |
2 |
C. |
|
D. |
1 |
如图,在正方形 中, , 是对角线 上的两点,且 ,连接 并延长交 于点 ,连接 并延长交 于点 ,连接 ,则
A. |
|
B. |
|
C. |
1 |
D. |
|
如图,在 中, , , , 为 边上的一个动点,连接 , 为 上的一个动点,连接 , ,当 时,线段 的最小值是
A. |
3 |
B. |
4 |
C. |
5 |
D. |
6 |
甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为 , ,则两人射击成绩比较稳定的是 (填“甲”或“乙” .
尺规作图(只保留作图痕迹,不要求写出作法).如图,已知 ,且 .
(1)在 边上求作点 ,使 ;
(2)在 边上求作点 ,使 .
如图,一次函数 的图象与反比例函数 的图象相交,其中一个交点的横坐标是1.
(1)求 的值;
(2)若将一次函数 的图象向下平移4个单位长度,平移后所得到的图象与反比例函数 的图象相交于 , 两点,求此时线段 的长.
某校为了了解本校学生每天课后进行体育锻炼的时间情况,在5月份某天随机抽取了若干名学生进行调查,调查发现学生每天课后进行体育锻炼的时间都不超过100分钟,现将调查结果绘制成两幅尚不完整的统计图表.请根据统计图表提供的信息,解答下列问题:
组别 |
锻炼时间(分 |
频数(人) |
百分比 |
|
|
12 |
|
|
|
|
|
|
|
18 |
|
|
|
6 |
|
|
|
3 |
|
(1)本次调查的样本容量是 ;表中 , ;
(2)将频数分布直方图补充完整;
(3)已知 组有2名男生和1名女生,从中随机抽取两名学生,恰好抽到1名男生和1名女生的概率是 ;
(4)若该校学生共有2200人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过60分钟的学生共有多少人?
某公司需将一批材料运往工厂,计划租用甲、乙两种型号的货车,在每辆货车都满载的情况下,若租用30辆甲型货车和50辆乙型货车可装载1500箱材料;若租用20辆甲型货车和60辆乙型货车可装载1400箱材料.
(1)甲、乙两种型号的货车每辆分别可装载多少箱材料?
(2)经初步估算,公司要运往工厂的这批材料不超过1245箱.计划租用甲、乙两种型号的货车共70辆,且乙型货车的数量不超过甲型货车数量的3倍,该公司一次性将这批材料运往工厂共有哪几种租车方案?
如图, 是 的外接圆, 是 的直径, 是 延长线上一点,连接 , ,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
如图,已知抛物线 与 轴相交于 , 两点,与 轴相交于点 ,对称轴是直线 ,连接 .
(1)求该抛物线的表达式;
(2)若过点 的直线 与抛物线相交于另一点 ,当 时,求直线 的表达式;
(3)在(2)的条件下,当点 在 轴下方时,连接 ,此时在 轴左侧的抛物线上存在点 ,使 .请直接出所有符合条件的点 的坐标.