高三数学第五套
已知x,y的取值如右表:从散点图可以看出y与x线性相关,且回归方程为,则( )
x |
0 |
1 |
3 |
4 |
y |
2.2 |
4.3 |
4.8 |
6.7 |
A.3.25 B.2.6 C.2.2 D.0
如图,在一个不规则多边形内随机撒入200粒芝麻(芝麻落到任何位置的可能性相等),恰有40粒落入半径为1的圆内,则该多边形的面积约为( )
A. | B. | C. | D. |
在某项测量中,测量结果 服从正态分布 ,若在(0,2)内取值的概率为0.4,则在(0,+∞)内取值的概率为( )
A.0.2 | B.0.4 | C.0.8 | D.0.9 |
如图所示的五个区域中,现有四种颜色可供选择.要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为 ( )
A.24种 | B.48种 | C.72种 | D.96种 |
一个袋中装有大小相同的5个白球和3个红球,现在不放回的取2次球,每次取出一个球,记“第1次拿出的是白球”为事件,“第2次拿出的是白球”为事件,则事件与同时发生的概率是( )
A. | B. | C. | D. |
某单位为了了解用电量(度)与当天平均气温(°C)之间的关系,随机统计了某4天的当天平均气温与用电量(如右表)。由数据运用最小二乘法得线性回归方程,则__________.
平均气温(°C) |
18 |
13 |
10 |
-1 |
用电量(度) |
25 |
35 |
37 |
63 |
(本小题满分10分)某校高一年级开设,,,,五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选课程,不选课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.
(Ⅰ)求甲同学选中课程且乙同学未选中课程的概率;
(Ⅱ)用表示甲、乙、丙选中课程的人数之和,求的分布列和数学期望.
(本小题满分13分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:
3 |
4 |
5 |
6 |
|
2.5 |
3 |
4 |
4.5 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:)