初三数学第六套
下列命题中,真命题是( )
A.对角线相等的四边形是矩形 |
B.对角线互相垂直平分的四边形是菱形 |
C.一组对边平行,另一组对边相等的四边形是平行四边形 |
D.一组邻边相等,并且有一个内角为直角的四边形是正方形 |
下列判定两个直角三角形全等的方法,错误的是 ( )
A.两条直角边对应相等 |
B.斜边和一锐角对应相等 |
C.斜边和一直角边对应相等 |
D.两锐角对应相等 |
如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行( )
A.8米 | B.10米 | C.12米 | D.14米 |
为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2015年4月份用电量的调查结果,那么关于这10户居民月用电量(单位:度),下列说法错误的是( )
居民(户) |
1 |
3 |
2 |
4 |
月用电量(度/户) |
40 |
50 |
55 |
60 |
A.中位数是55 B.众数是60
C.方差是29 D.平均数是54
如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图像大致为( )
如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH,已知∠DFE=∠GFH=120°,FG=FE。设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是( )
A. | B. | C. | D. |
如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为 .
(本题8分)如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线相交于点F.
(1)求证:△ABE≌△DFE;
(2)试连接BD、AF,判断四边形ABDF的形状,并证明你的结论.
(本题12分)某校举办了一次知识竞赛,满分10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如图所示.
(1)补充完成下面的成绩统计分析表:
(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游偏上!”观察上表可知,小明是 组的学生;(填“甲”或“乙”)
(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组,请你给出两条支持乙组同学观点的理由.
(本题10分)某医药研究所开发一种新药.在试验药效时发现,如果成人按规定剂量服用,那么服药2h后血液中含药量最高,达到每毫升6μg(1μg=10-3mg),接着逐步衰减,10h后血液中含药量为每毫升3μg.若每毫升血液中含药量y(μg)随时间x(h)的变化如图所示,则当成人按规定剂量服药后:
(1)分别求出0≤x≤2和x>2时,y与x之间的函数解析式;
(2)如果每毫升血液中含药量为4μg或4μg以上时药物对疾病的治疗是有效的,那么这个有效时间是多长?
(本题12分)如图,直线:分别与轴、轴交于A、B两点,点C线段AB上,作CD⊥x轴于D, CD="2OD," 点E线段OB上,且AE=BE;
(1)填空:点C的坐标为( , );点E的坐标为( , );
(2)直线过点E,且将△AOB分成面积比为1:2的两部分,求直线的表达式;
(3)点P在x轴上运动,
①当PC+PE取最小值时,求点P的坐标及PC+PE的最小值;
②当PC-PE取最大值时,求点P的坐标及PC-PE的最大值;
(本题13分)已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.
(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC﹣CD.
(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.