在水平长直的轨道上,有一长度L=2m的平板车在外力控制下始终保持速度v0=4m/s向右做匀速直线运动.某时刻将一质量为m=1kg的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ=0.2,取g=10m/s2,求:(1)小滑块m的加速度大小和方向;(2)通过计算判断滑块能否从车上掉下;如果能请说明从车的左端还是右端掉下;(3)若当滑块轻放到车面中点的同时对该滑块施加一个水平向右的恒力F,要保证滑块不能从车的左端掉下,恒力F大小应满足什么条件?
节能混合动力车是一种可以利用汽油及所储存电能作为动力来源的汽车.有一质量m=1000 kg的混合动力轿车,在平直公路上以v1=90 km/h匀速行驶,发动机的输出功率为P=50 kW.当驾驶员看到前方有80 km/h的限速标志时,保持发动机功率不变,立即启动利用电磁阻尼带动的发电机工作给电池充电,使轿车做减速运动,运动L=72 m后,速度变为v2=72 km/h.此过程中发动机功率的用于轿车的牵引,用于供给发电机工作,发动机输送给发电机的能量最后有50%转化为电池的电能.假设轿车在上述运动过程中所受阻力保持不变.求:(1)轿车以90 km/h在平直公路上匀速行驶,所受阻力F阻的大小;(2)轿车从90 km/h减速到72 km/h过程中,获得的电能E电 ;(3)轿车仅用其在上述减速过程中获得的电能E电 维持72 km/h匀速运动的距离L′.
如图所示,光滑水平面AB与竖直面内的半圆形导轨在B点相切,半圆形导轨的半径为R。一个质量为m的物体将弹簧压缩至A点后由静止释放,在弹力作用下物体获得某一向右的速度后脱离弹簧,当它经过B点进入导轨的瞬间对轨道的压力为其重力的8倍,之后向上运动恰能到达最高点C。(不计空气阻力)试求: (1)物体在A点时弹簧的弹性势能; (2)物体从B点运动至C点的过程中产生的内能。
如图所示,一倾角为θ=30°的光滑斜面底端有一与斜面垂直的固定挡板M,物块A、B之间用一与斜面平行的轻质弹簧连接,现用力缓慢沿斜面向下推动物块B,当弹簧具有5 J弹性势能时撤去推力释放物块B;已知A、B质量分别为mA=4 kg,mB=2 kg,弹簧的弹性势能表达式为Ep=kx2,其中弹簧的劲度系数k=1 000 N/m。x为弹簧形变量。g=10 m/s2,求:(1)当弹簧恢复原长时,物块B的速度大小; (2)物块A刚离开挡板时,物块B的动能。
如图甲所示为游乐场中过山车的实物图片,图乙是过山车的模型图.在模型图中,半径分别为R1=2.0 m和R2=8.0 m的两个光滑圆形轨道,固定在倾角为α=37°的倾斜直轨道平面上的Q、Z两点,且两圆形轨道的最高点A、B均与P点平齐,圆形轨道与斜直轨道之间圆滑连接.现使小车(视作质点)从P点以一定的初速度沿斜直轨道向下运动.已知斜直轨道与小车间的动摩擦因数为μ=,g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)若小车恰好能通过第一个圆形轨道的最高点A处,则其在P点的初速度应为多大? (2)若小车在P点的初速度为10 m/s,则小车能否安全通过两个圆形轨道?
物体A放在足够长的木板B上,木板B静置于水平面.t=0时,电动机通过水平细绳以恒力F拉木板B,使它做初速度为零、加速度aB=1.0 m/s2的匀加速直线运动.已知A的质量mA和B的质量mB均为2.0 kg,A、B之间的动摩擦因数μ1=0.05,B与水平面之间的动摩擦因数μ2=0.1,最大静摩擦力与滑动摩擦力大小视为相等,重力加速度g取10 m/s2.求:(1)物体A刚运动时的加速度aA; (2)t=1.0 s时,电动机的输出功率P; (3)若t=1.0 s时,将电动机的输出功率立即调整为P′=5 W,并在以后的运动过程中始终保持这一功率不变,t=3.8 s时物体A的速度为1.2 m/s.则在t=1.0 s到t=3.8 s这段时间内木板B的位移为多少?