(10分)一个带正电的微粒,从A点射入水平方向的匀强电场中,微粒沿直线AB运动,如图所示.AB与电场线夹角θ=30°,已知带电粒子的质量m=1.0×10-7 kg,电荷量q=1.0×10-10 C,A、B相距L=20 cm.(取g=10 m/s2,结果保留两位有效数字)求:(1)电场强度的大小和方向.(2)要使微粒从A点运动到B点,微粒射入电场时的最小速度是多少.
如图甲所示,两根质量均为0.1 kg完全相同的导体棒a、b,用绝缘轻杆相连置于由金属导轨PQ、MN架设的斜面上.已知斜面倾角θ为53°,a、b导体棒的间距是PQ、MN导轨的间距的一半,导轨间分界线OO′以下有方向垂直斜面向上的匀强磁场.当a、b导体棒沿导轨下滑时,其下滑速度v与时间的关系图象如图乙所示.若a、b导体棒接入电路的电阻均为1 Ω,其他电阻不计,取g=10 m/s2,sin 53°=0.8,cos 53°=0.6,试求: (1)PQ、MN导轨的间距d; (2)a、b导体棒与导轨间的动摩擦因数; (3)匀强磁场的磁感应强度B的大小.
13.如图所示,两足够长的光滑金属导轨竖直放置,相距为L, 一理想电流表与两导轨相连,匀强磁场与导轨平面垂直。一质量为m、有效电阻为R的导体棒在距磁场上边界h处静止释放。导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I。整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。求: (1)磁感应强度的大小B; (2)电流稳定后,导体棒运动速度的大小v; (3)流经电流表电流的最大值
11.如图所示,质量m1=0.1kg,电阻R1=0.3Ω,长度l=0.4m的导体棒ab横放在U型金属框架上。框架质量m2=0.2kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2,相距0.4m的MM’、NN’相互平行,电阻不计且足够长。电阻R2=0.1Ω的MN垂直于MM’。整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5T。垂直于ab施加F=2N的水平恒力,ab从静止开始无摩擦地运动,始终与MM’、NN’保持良好接触,当ab运动到某处时,框架开始运动。设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10m/s2. (1)求框架开始运动时ab速度v的大小; (2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1J,求该过程ab位移x的大小。
如图所示,两根足够长的光滑平行金属导轨MN、PQ间距为 m,其电阻不计,两导轨及其构成的平面均与水平面成角。完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m=0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止。取g=10,问 通过棒cd的电流I是多少,方向如何? 棒ab受到的力F 多大? 棒cd每产生的热量,力F做的功W是多少?
如图,ab和cd是两条竖直放置的长直光滑金属导轨,MN和是两根用细线连接的金属杆,其质量分别为m和2m。竖直向上的外力F作用在杆MN上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R,导轨间距为。整个装置处在磁感应强度为B的匀强磁场中,磁场方向与导轨所在平面垂直。导轨电阻可忽略,重力加速度为g。在t=0时刻将细线烧断,保持F不变,金属杆和导轨始终接触良好。求: (1)细线烧断后,任意时刻两杆运动的速度之比; (2)两杆分别达到的最大速度。