如图a所示的平面坐标系xOy,在整个区域内充满了匀强磁场,磁场方向垂直坐标平面,磁感应强度B随时间变化的关系如图b所示。开始时刻,磁场方向垂直纸面向内(如图),t=0时刻有一带正电的粒子(不计重力)从坐标原点O沿x轴正向进入磁场,初速度为v0=2×103m/s。已知带电粒子的比荷为,其它有关数据见图中标示。试求:(1)时粒子所处位置的坐标(x1,y1);(2)带电粒子进入磁场运动后第一次到达y轴时离出发点的距离h;(3)带电粒子是否还可以返回原点?如果可以,求返回原点经历的时间t′。
如图所示,中轴线PQ将矩形区域MNDC分成上、下两部分,上部分充满垂直纸面向外的匀强磁场,下部分充满垂直纸面向内的匀强磁场,磁感应强度皆为B.一质量为m、带电荷量为q的带正电粒子从P点进入磁场,速度与边MC的夹角θ=30°.MC边长为a,MN边长为8a,不计粒子重力.求:(1)若要该粒子不从MN边射出磁场,其速度最大值是多少?(2)若要该粒子恰从Q点射出磁场,其在磁场中的运行时间最少是多少?
在磁感应强度B=0.5T的匀强磁场中有一个正方形金属线圈abcd,边长L=0.2m。线圈的ad边与磁场的左侧边界重合,如图所示,线圈的电阻R=0.4Ω.用外力把线圈从磁场中移出有两种方法:一种是用外力把线圈从左侧边界匀速平移出磁场;另一种是以ad边为轴,用力使线圈匀速转动移出磁场,两种过程所用时间都是t=0.1s。求(1)线圈匀速平移出磁场的过程中,外力对线圈所做的功。(2)线圈匀速转动移出磁场的过程中,外力对线圈所做的功。
横波如图所示,t1时刻波形为图中实线所示;t2时刻波形如图中虚线所示.已知Δt=t2-t1=0.5s,且3T<t2-t1<4T,问:(1)如果波向右传播,波速多大? (2)如果波向左传播,波速多大?
如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R=0.6m。平台上静止着两个滑块A、B,mA=0.1Kg,mB=0.2Kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上。小车质量为M=0.3Kg,车面与平台的台面等高,车面左侧粗糙部分长度为L=0.8m,动摩擦因数为μ=0.2,右侧拴接一轻质弹簧,弹簧自然长度所在处车面光滑。点燃炸药后,A滑块到达轨道最高点时对轨道的压力大小恰好等于A滑块的重力,滑块B冲上小车。两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s2。求: ①炸药爆炸后滑块B的速度大小②滑块B滑上小车后的运动过程中弹簧的最大弹性势能
机械横波某时刻的波形图如图所示,波沿x轴正方向传播,质点p的坐标x=0.32 m.从此时刻开始计时.(1)若每间隔最小时间0.4 s重复出现波形图,求波速.(2)若p点经0.4 s第一次达到正向最大位移,求波速.(3)若p点经0.4 s到达平衡位置,求波速.