如图1所示,在某星球表面轻绳约束下的质量为m的小球在竖直平面内做圆周运动,小球在最低点与最高点所受轻绳的拉力之差为ΔF,假设星球是均匀球体,其半径为R,已知万有引力常量为G,不计一切阻力。
(1)求星球表面重力加速度
(2)求该星球的密度
(3)如图所示2,在该星球表面上,某小球以大小为v0的初速度平抛,恰好能击中倾角为θ的斜面,且位移最短,试求该小球平抛的时间
如图1所示,在某星球表面轻绳约束下的质量为m的小球在竖直平面内做圆周运动,小球在最低点与最高点所受轻绳的拉力之差为ΔF,假设星球是均匀球体,其半径为R,已知万有引力常量为G,不计一切阻力。
(1)求星球表面重力加速度
(2)求该星球的密度
(3)如图所示2,在该星球表面上,某小球以大小为v0的初速度平抛,恰好能击中倾角为θ的斜面,且位移最短,试求该小球平抛的时间