)质量为M="6" kg的木板B静止于光滑水平面上,物块A质量为6 kg,停在B的左端。质量为1 kg的小球用长为0. 8 m的轻绳悬挂在固定点O上,将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与A发生碰撞后反弹,反弹所能达到的最大高度为0.2 m,物块与小球可视为质点,不计空气阻力。已知A、B间的动摩擦因数,为使A、B达到共同速度前A不滑离木板,木板至少多长?
在一广阔的匀强磁场中,建立一直角坐标系,如图所示,在坐标系的原点O释放一速率为v,质量为m电荷量为十q的粒子(重力不计),释放时速度方向垂直于B的方向,且与x轴成30°角, 则(1)其第一次经过y轴时,轨迹与y轴交点离O点距离为多少?(不考虑空气阻力) (2粒子从O点开始运动到穿过y轴时所用的时间 (3粒子做圆周运动圆心的坐标
如图所示,面积为0.2m2的100匝线圈A处在磁场中,磁场方向垂直于线圈平面.磁感强度随时间变化的规律是B=(6-0.2t) (T)已知R1=4Ω,R2=6Ω,电容C=30μF,线圈A的电阻不计.求: (1)闭合S后,通过R2的电流强度大小和方向。 (2)闭合S一段时间后在断开S,S断开后通过R2的电荷量是多少?
如图所示,足够长的光滑斜面倾角θ=30°,一个带正电、电量为q的物体停在斜面底端B。现在加上一个沿斜面向上的场强为E的匀强电场,在物体运动到A点时撤销电场,那么: (1)若已知BA距离x、物体质量m,则物体回到B点时速度大小多少? (2)若已知物体在斜面上运动的总时间是加电场时间的2倍,则物体的质量m是多少?
宇航员在一行星上以10m/s的速度竖直上抛一质量为0.2kg的物体,不计阻力,经2.5s后落回手中,已知该星球半径为7220km。 (1)该星球表面的重力加速度多大? (2)要使物体沿水平方向抛出而不落回星球表面,沿星球表面抛出的速度至少是多大? (3)若物体距离星球无穷远处时其引力势能为零,则当物体距离星球球心r时其引力势能(式中m为物体的质量,M为星球的质量,G为万有引力常量)。问要使物体沿竖直方向抛出而不落回星球表面,沿星球表面抛出的速度至少是多大?
如图所示,细绳长为L,吊一个质量为m的铁球(可视作质点),球离地的高度h=2L,当绳受到大小为2mg的拉力时就会断裂.绳的上端系一质量不计的环,环套在光滑水平杆上,现让环与球一起以速度向右运动,在A处环被挡住而立即停止,A离墙的水平距离也为L.求在以后的运动过程中,球第一次碰撞点离墙角B点的距离是多少?