如图所示,质量M=2 kg的滑块套在光滑的水平轨道上,质量m=1 kg的小球通过长L=0.5 m的轻质细杆与滑块上的光滑轴O连接,小球和轻杆可在竖直平面内绕O轴自由转动,开始轻杆处于水平状态,现给小球一个竖直向上的初速度v0=4 m/s,g取10 m/s2。(1)若锁定滑块,试求小球通过最高点P时对轻杆的作用力大小和方向;(2)解除对滑块的锁定,小球过最高点时速度大小v′=2 m/s,求此时滑块的速度大小。
如图(a)所示,水平放置的平行金属板A和B间的距离为d,极长,B板的右侧边缘恰好是倾斜挡板NM上的一个小孔K,NM与水平挡板NP成60°角,K与N间的距离。现有质量为m带正电且电荷量为q的粒子组成的粒子束,从AB的中点O以平行于金属板方向OO'的速度v0不断射入,不计粒子所受的重力。(1)若在A、B板上加一恒定电压U=U0,则要使粒子穿过金属板后恰好打到小孔K,求U0的大小。(2)若在A、B板上加上如图(b)所示的电压,电压为正表示A板比B板的电势高,其中,且粒子只在0~时间内入射,则能打到小孔K的粒子在何时从O点射入?(3)在NM和NP两档板所夹的某一区域存在一垂直纸面向里的匀强磁场,使满足条件(2)从小孔K飞入的粒子经过磁场偏转后能垂直打到水平挡板NP上(之前与挡板没有碰撞),求该磁场的磁感应强度的最小值。
如图所示,均可视为质点的三个物体A、B、C穿在竖直固定的光滑绝缘细线上,A与B紧靠在一起(但不粘连),C紧贴着绝缘地板,质量分别为MA=2.32kg,MB=0.20kg,MC=2.00kg,其中A不带电,B、C的带电量分别为qB = +4.0×10-5c,qC =+7.0×10-5c,且电量都保持不变,开始时三个物体均静止。现给物体A施加一个竖直向上的力F,若使A由静止开始向上作加速度大小为a=4.0m/s2的匀加速直线运动,则开始需给物体A施加一个竖直向上的变力F,经时间t后,F变为恒力。已知g=10m/s2,静电力恒量k=9×109N·m2/c2,求:(1)静止时B与C之间的距离;(2)时间t的大小;(3)在时间t内,若变力F做的功WF=53.36J,则B所受的电场力对B做的功为多大?
如图所示,长为L的细绳上端系一质量不计的环,环套在光滑水平杆上,在细线的下端吊一个质量为m的铁球(可视作质点),球离地的高度h=L。现让环与球一起以的速度向右运动,在A处环被挡住后立即停止。已知A离右墙的水平距离也为L,当地的重力加速度为,不计空气阻力。求:(1)在环被挡住立即停止时绳对小球的拉力大小;(2)若在环被挡住后,细线突然断裂,则在以后的运动过程中,球的第一次碰撞点离墙角B点的距离是多少?
如图12-18所示是一种测量通电螺线管中磁场的装置,把一个很小的测量线圈A放在待测处,线圈与测量电量的冲击电流计G串联,当用双刀双掷开关S使螺线管的电流反向时,测量线圈中就产生感应电动势,从而引起电荷的迁移,由表G测出电量Q,就可以算出线圈所在处的磁感应强度B。已知测量线圈共有N匝,直径为d,它和表G串联电路的总电阻为R,则被测处的磁感强度B为多大?
已知某一区域的地下埋有一根与地表面平行的直线电缆,电缆中通有变化的电流,在其周围有变化的磁场,因此可以通过在地面上测量闭合试探小线圈中的感应电动势来探测电缆的确切位置、走向和深度。当线圈平面平行地面测量时,在地面上a、c两处测得试探线圈中的电动势为零,b、d两处线圈中的电动势不为零;当线圈平面与地面成30°夹角时,在b、d两处测得试探线圈中的电动势为零。经过测量发现,a、b、c、d恰好位于边长为L=1m的正方形的四个顶角上,如图12-15所示。据此可以判定:地下电缆在哪两点连线的正下方?并求出地下电缆离地表面的深度h。