如图所示,重量为G=100 N、长为L=2m的均匀木棒放在倾斜的粗糙斜面上,斜面与水平桌面的夹角,如图(甲)所示,至少要用35N的平行斜面的推力,才能使它从原地开始运动。木棒从原地移动以后,用10N的平行斜面的推力,就可以使木棒继续做匀速运动。求:(1)木棒与桌面问的最大静摩擦力Fmax;(2)木棒与桌面间的动摩擦因数;(3)当平行斜面的推力使木棒匀速运动至木棒有0.6m露出斜面时,如图(乙)所示,则此时的滑动摩擦力是多少?
土星周围有许多大小不等的岩石颗粒,其绕土星的运动可视为圆周运动。其中有两个岩石颗粒A和B与土星中心距离分别为rA=8.0×104 km和r B=1.2×105 km。忽略所有岩石颗粒间的相互作用。(结果可用根式表示)(1)求岩石颗粒A和B的线速度之比;(2)求岩石颗粒A和B的周期之比;(3)土星探测器上有一物体,在地球上重为10 N,推算出他在距土星中心3.2×105 km处受到土星的引力为0.38 N。已知地球半径为6.4×103 km,请估算土星质量是地球质量的多少倍?
在某个半径为R=105m的行星表面,对于一个质量m=1kg的砝码,用弹簧秤称量,其重力的大小G=1.6N,试计算该星球的第一宇宙速度V1是多大?
如图甲,直角坐标系xOy在竖直平面内,x轴上方(含x轴)区域有垂直坐标系xOy向里的匀强磁场,磁感应强度B0=T;在x轴下方区域有正交的匀强电场和磁场,场强E随时间t的变化关系如图乙,竖直向上为电场强度正方向,磁感应强度B随时间t的变化关系如图丙,垂直xOy平面为磁场的正方向。光滑的绝缘斜面在第二象限,底端与坐标原点O重合,与负x轴方向夹角θ=30°。一质量m=1×10-5kg、电荷量q=1×10-4C的带正电的粒子从斜面上A点由静止释放,运动到坐标原点时恰好对斜面压力为零,以此时为计时起点。求:(1)释放点A到坐标原点的距离L;(2)带电粒子在t=2.0s时的位置坐标;(3)在垂直于x轴的方向上放置一俘获屏,要使带电粒子垂直打在屏上被俘获,屏所在位置的横坐标应满足什么条件?
如图,电阻不计的足够长的平行光滑金属导轨PX、QY相距L=0.5m,底端连接电阻R=2Ω,导轨平面倾斜角θ=30°,匀强磁场垂直于导轨平面向上,磁感应强度B=1T。质量m=40g、电阻R=0.5Ω的金属棒MN放在导轨上,金属棒通过绝缘细线在电动机牵引下从静止开始运动,经过时间t1=2s通过距离x=1.5m,速度达到最大,这个过程中电压表示数U0=8.0V,电流表实数I0=0.6A,示数稳定,运动过程中金属棒始终与导轨垂直,细线始终与导轨平行且在同一平面内,电动机线圈内阻r0=0.5Ω,g=10m/s2.。求: (1)细线对金属棒拉力的功率P多大?(2)从静止开始运动的t1=2s时间内,电阻R上产生的热量QR是多大?(3)用外力F代替电动机沿细线方向拉金属棒MN,使金属棒保持静止状态,金属棒到导轨下端距离为d=1m。若磁场按照右图规律变化,外力F随着时间t的变化关系式?
在民航业内,一直有“黑色10分钟“的说法,即从全球已发生的飞机事故统计数据来看,大多数的航班事故发生在飞机起飞阶段的3分钟和着陆阶段的7分钟。飞机安全事故虽然可怕,但只要沉着冷静,充分利用逃生设备,逃生成功概率相当高,飞机失事后的90秒内是逃生的黄金时间。如图为飞机逃生用的充气滑梯,滑梯可视为理想斜面,已知斜面长L=8m,斜面倾斜角θ=37°,人下滑时与充气滑梯间动摩擦因素为u=0.5。不计空气阻力,g=10m/s2,Sin37°=0.6,cos37°=0.8,=1.4。求:(1)旅客从静止开始由滑梯顶端滑到底端逃生,需要多长时间?(2)一旅客若以v0=4.0m/s的初速度抱头从舱门处水平逃生,当他落到充气滑梯上后没有反弹,由于有能量损失,结果他以v=4.0m/s的速度开始沿着滑梯加速下滑。该旅客以这种方式逃生与(1)问中逃生方式相比,节约了多长时间?