如图所示,竖直平平面内有一边长为L、质量为m,电阻为R的正方形线框在竖直向下的匀强重力场和水平方向的磁场组成的复合场以初速度v0水平抛出。磁场方向与线框平面垂直,磁场的磁感应强度随竖直向下的z轴按B=B0+kz的规律均匀增大。已知重力加速度为g。求:(1)线框竖直方向速度为v1时,线框中瞬时电流的大小;(2)线框在复合场中运动的最大电功率;(3)若线框从开始抛出到瞬时速度大小达到v2所经历的时间为t,那么线框在时间t内的总位移大小为多少。
如图所示,两个带等量异种电荷、竖直放置的、电容为C、间距为d的平行金属板,两板之间的电场可视为匀强电场。一个质量为m,带电量为-q的小球,用长为L(L<d)的不可伸长细线悬挂于O点,将小球拉至水平位置M,由静止释放,当小球向下摆过60°到达N点时,速度恰为零。(细线始终处于伸直状态)则: (1)左极板带电量Q是多少? (2)小球到达N点时的加速度大小是多少?
在光滑水平面上静置有质量均为m的木板AB和滑块CD,木板AB上表面粗糙.动摩擦因数为,滑块CD上表面是光滑的1/4圆弧,其始端D点切线水平且在木板AB上表面内,它们紧靠在一起,如图所示.一可视为质点的物块P,质量也为m,从木板AB的右端以初速度v0滑上木板AB,过B点时速度为v0/2,又滑上滑块CD,最终恰好能滑到滑块CD圆弧的最高点C处,求: (1)物块滑到B处时木板的速度vB (2)滑块CD圆弧的半径R. (3)木板的长度L.
如图所示,一个带电的小球从P点自由下落,P点距场区边界MN高为h,边界MN下方有方向竖直向下、电场强度为E的匀强电场,同时还有垂直于纸面的匀强磁场,小球从边界上的a点进入电场与磁场的复合场后,恰能做匀速圆周运动,并从边界上的b点穿出,已知ab=L,求: (1)小球的带电性质及其电荷量与质量的比值; (2)该匀强磁场的磁感应强度B的大小和方向; (3)小球从P经a至b时,共需时间为多少?
质量为0.1 kg的弹性球从空中某高度由静止开始下落,该下落过程对应的图象如图所示。球与水平地面相碰后离开地面时的速度大小为碰撞前的3/4。该球受到的空气阻力大小恒为,取="10" m/s2, 求: (1)弹性球受到的空气阻力的大小; (2)弹性球第一次碰撞后反弹的高度。
如图1所示,在x轴上0到d范围内存在电场(图中未画出),x轴上各点的电场沿着x轴正方向,并且电场强度大小E随x的分布如图2所示;在x轴上d到2d范围内存在垂直纸面向里的匀强磁场,磁感应强度大小为B。一质量为m,电量为的粒子沿x轴正方向以某一初速度从O点进入电场,最终粒子恰从坐标为(2d,)的P点离开磁场。不计粒子重力。 (1)求在x=0.5d处,粒子的加速度大小a; (2)求粒子在磁场中运动时间t; (3)类比是一种常用的研究方法。对于直线运动,教科书中讲解了由v-t图像求位移的方法。请你借鉴此方法,并结合其他物理知识,求电场对粒子的冲量大小I。