如图所示,一根长为的细绝缘线,上端固定,下端系一个质量为m的带电小球,将整个装置放入一匀强电场,电场强度大小为E,方向水平向右,已知:当细线偏离竖直方向为θ=370时,小球处于平衡状态,(sin370=0.6)试求:(1)小球带何种电荷,带电量为多少;(2)如果将细线剪断,小球经时间t发生的位移大小;(3)若将小球拉至最低点无初速释放,当小球运动到图示位置时受到线的拉力的大小。
如图所示,电源的总功率为40W,电阻,,电源内阻,电源的输出功率为。求: (1)电源的内电路功率和电路中的总电流; (2)电源的电动势; (3)的阻值。
如图,在竖直向下的磁感应强度为B的匀强磁场中,两根足够长的平行光滑金属轨道MN、PQ固定在水平面内,相距为L。一质量为m的导体棒ab垂直于MN、PQ放在轨道上,与轨道接触良好。轨道和导体棒的电阻均不计。 (1)如图1,若轨道左端接一电动势为E、内阻为r的电源和一阻值未知的电阻。闭合开关S,导体棒从静止开始运动,经过一段时间后,导体棒达到稳定最大速度vm,求此时电源的输出功率。 (2)如图2,若轨道左端接一电容器,电容器的电容为C,导体棒在水平恒定拉力的作用下从静止(t=0)开始向右运动。电容器两极板电势差随时间变化的图象如图3所示,已知t1时刻电容器两极板间的电势差为U1。求导体棒运动过程中受到的水平拉力大小。
如图所示的坐标系,在y轴左侧有垂直纸面、磁感应强度为B的匀强磁场。在x=L处,有一个与x轴垂直放置的屏,y轴与屏之间有与y轴平行的匀强电场。在坐标原点O处同时释放两个均带正电荷的粒子A和B,粒子A的速度方向沿着x轴负方向,粒子B的速度方向沿着x轴正方向。已知粒子A的质量为m,带电量为q,粒子B的质量是n1m,带电量为n2q(n1、n2均为正整数),释放瞬间两个粒子的速率满足关系式。若已测得粒子A在磁场中运动的半径为r,粒子B击中屏的位置到x轴的距离也等于r。粒子A和粒子B的重力均不计。 (1)若r、m、q、B已知,求vA。 (2)求粒子A和粒子B打在屏上的位置之间的距离(结果用r、n1、n2表示)。
如图所示,K与虚线MN之间是加速电场,虚线MN与PQ之间是匀强电场,虚线PQ与荧光屏之间是匀强磁场,且MN、PQ与荧光屏三者互相平行,电场和磁场的方向如图所示,图中A点与O点的连线垂直于荧光屏。一带正电的粒子从A点离开加速电场,速度方向垂直于偏转电场方向射入偏转电场,在离开偏转电场后进入匀强磁场,最后恰好垂直地打在荧光屏上。已知电场和磁场区域在竖直方向足够长,加速电场电压与偏转电场的场强关系为U=Ed,式中的d是偏转电场的宽度,磁场的磁感应强度B与偏转电场的电场强度E和带电粒子离开加速电场的速度v0关系符合表达式v0=。若题中只有偏转电场的宽度d为已知量。 (1)画出带电粒子轨迹示意图。 (2)磁场的宽度L为多少? (3)带电粒子在电场和磁场中垂直于v0方向的偏转距离分别是多少?
一台发电机最大输出功率为4000kW,电压为4000V,经变压器T1升压后向远方输电。输电线路总电阻R=1kΩ。到目的地经变压器T2降压,使额定电压为220V的用电器正常工作。若在输电线路上消耗的功率为发电机输出功率的10%,T1和T2为理想变压器,发电机处于满负荷工作状态,试求: (1)输电线上的功率损失和电压损失; (2)T1和T2原、副线圈匝数比。