如下图所示,把总电阻为2R的均匀电阻丝焊接成一半径为a的圆环,水平固定在竖直向下的磁感应强度为B的匀强磁场中,一长度为2a,电阻等于R,粗细均匀的金属棒MN放在圆环上,它与圆环始终保持良好的接触.当金属棒以恒定速度v向右移动经过环心O时,求:(1)棒上电流的大小和方向及棒两端的电压UMN;(2)在圆环和金属棒上消耗的总热功率.
在2014年索契冬奥会上,奥地利选手梅耶耳力战群雄,最终夺得男子高山滑雪冠军。假设滑雪赛道可简化为倾角为θ=30°,高度为h=945m的斜面,运动员的质量为m=60kg,比赛中他由静止从斜面最高点开始滑下,滑到斜面底端时的速度v=30m/s,该过程中运动员的运动可看作匀加速直线运动(g取10m/s2)求: (1)整个过程运动时间; (2)运动过程中所受的平均阻力(结果保留三位有效数字)。
如图所示,水平传送带以恒定的速率v="4" m/s运送质量m="0.5" kg的工件(可视为质点).工件都是在位置A无初速度地放在传送带上的,且每当前一个工件在传送带上停止相对运动时,后一个工件即放到传送带上,今测得与传送带保持相对静止的相邻两工件之间的距离为2.0 m·g取10 m/s2.求: (1)某一工件刚放到A点时它与前一工件之间的距离x0; (2)工件与传送带之间的动摩擦因数; (3)由于传送工件而使带动传送带的电动机多消耗的功率.
如图所示,质量为m=1kg的物块,放置在质量M=2kg足够长木板的中间,物块与木板间的动摩擦因数为0.1,木板放置在光滑的水平地面上.在地面上方存在两个作用区,两作用区的宽度均为1m,边界距离为d,作用区只对物块有力的作用:I作用区对物块作用力方向水平向右,II作用区对物块作用力方向水平向左.作用力大小均为3N.将物块与木板从图示位置(物块在I作用区内的最左边)由静止释放,已知在整个过程中物块不会滑离木板.取g=10m/s2. (1)在物块刚离开I区域时,物块的速度多大? (2)若物块刚进入II区域时,物块与木板的速度刚好相同,求两作用区的边界距离d; (3)物块与木板最终停止运动时,求它们相对滑动的路程.
光滑圆轨道和两倾斜直轨道组成如图所示装置,其中直轨道bc粗糙,直轨道cd光滑,两轨道相接处为一很小的圆弧。质量为m=0.1kg的滑块(可视为质点)在圆轨道上做圆周运动,到达轨道最高点a时的速度大小为v=4m/s,当滑块运动到圆轨道与直轨道bc的相切处b时,脱离圆轨道开始沿倾斜直轨道bc滑行,到达轨道cd上的d点时速度为零。若滑块变换轨道瞬间的能量损失可忽略不计,已知圆轨道的半径为R=0.25m,直轨道bc的倾角=37o,其长度为L=26.25m,d点与水平地面间的高度差为h=0.2m,取重力加速度g=10m/s2,sin37°=0.6。求: (1)滑块在圆轨道最高点a时对轨道的压力大小; (2)滑块与直轨道bc问的动摩擦因数; (3)滑块在直轨道bc上能够运动的时间。
如图所示,与纸面垂直的竖直面MN的左侧空间中存在竖直向上场强大小为的匀强电场(上、下及左侧无界)。一个质量为、电量为的可视为质点的带正电小球,在时刻以大小为的水平初速度向右通过电场中的一点P,当时刻在电场所在空间中加上一如图所示随时间周期性变化的磁场,使得小球能竖直向下通过D点,D为电场中小球初速度方向上的一点,PD间距为,D到竖直面MN的距离DQ为.设磁感应强度垂直纸面向里为正. (1)试说明小球在0—时间内的运动情况,并在图中画出运动的轨迹; (2)试推出满足条件时的表达式(用题中所给物理量、、、、来表示); (3)若小球能始终在电场所在空间做周期性运动.则当小球运动的周期最大时,求出磁感应强度及运动的最大周期的表达式(用题中所给物理量、、、来表示)。