如图,一个质量为0.6kg 的小球以某一初速度从P点水平抛出,恰好从光滑圆弧ABC的A点的切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失)。已知圆弧的半径R=0.3m , θ="60" 0,小球到达A点时的速度 v="4" m/s 。(取g ="10" m/s2)求:(1)小球做平抛运动的初速度v0;(2)P点与A点的水平距离和竖直高度;(3)小球到达圆弧最高点C时对轨道的压力。
如图所示,有一光滑、不计电阻且较长的“"平行金属导轨,间距L="l" m,导轨所在的平面与水平面的倾角为3 7°,导轨空间内存在垂直导轨平面的匀强磁场。现将一质量m=0.1kg、电阻R=2的金属杆水平靠在导轨处,与导轨接触良好。(g=l0m/s2,sin37°=0.6 cos37°=0.8)(1)若磁感应强度随时间变化满足B=2+0.2t(T),金属杆由距导轨顶部l m处释放,求至少经过多长时间释放,会获得沿斜面向上的加速度;(2)若匀强磁场大小为定值,对金属杆施加一个平行于导轨斜面向下的外力F,其大小为为金属杆运动的速度,使金属杆以恒定的加速度a=10m/s2沿导轨向下做匀加速运动,求匀强磁场磁感应强度B的大小;(3)若磁感应强度随时间变化满足时刻金属杆从离导轨顶端So="l" m处静止释放,同时对金属杆施加一个外力,使金属杆沿导轨下滑且没有感应电流产生,求金属杆下滑5 m所用的时间。
如图所示,电压为U的两块平行金属板MN,M板带正电。X轴与金属板垂直,原点O与N金属板上的小孔重合,在O≤X≤d区域存在垂直纸面的匀强磁场 (图上未画出)和沿y轴负方向火小为的匀强电场,与E在y轴方向的区域足够大。有一个质量为m,带电量为q的带正电粒子(粒子重力不计),从靠近M板内侧的P点(P点在X轴上)由静止释放后从N板的小孔穿出后沿X轴做直线运动;若撤去磁场,在第四象限X>d的某区域加上左边界与y轴平行且垂直纸面的匀强磁场B2(图上未画出),为了使粒子能垂直穿过X轴上的Q点,Q点坐标为()。求(1)磁感应强度的大小与方向;(2)磁感应强度B2的大小与方向;(3)粒子从坐标原点O运动到Q点所用的时间t。
如图所示,光滑的水平面AB与半径R=0.4m的光滑竖直半圆轨道BCD在B点相切,D点为半圆轨道最高点,A点的右侧连接一粗糙的水平面。用细线连接甲、乙两物体,中问夹一轻质压缩弹簧,弹簧与甲、乙两物体不拴接,甲的质量朋=4kg,乙的质量=5kg,甲、乙均静止。若固定乙,烧断细线,甲离开弹簧后经过B点进入半圆轨道,过D点时对轨道的压力恰好为零。取g=10m/s2,甲、乙两物体均可看作质点,求:(1)甲离开弹簧后经过B点时的速度的大小;(2)在弹簧压缩量相同的情况下,若固定甲,烧断细线,乙物体离开弹簧后从A点进入动摩擦因数=0.4的粗糙水平面,则乙物体在粗糙水平面运动的位移S。
一物体在地球表面重16N,它在以5m/s2的加速度加速上升的火箭中对台秤的压力为9N,则此时火箭离地面的距离为地球半径的几倍?(g取10m/s2)
如图所示,半径为R,内径很小的光滑半圆管竖直放置。两个质量均为m的小球a、b以不同的速度进入管内,a通过最高点A时,对管壁上部的压力为3mg,b通过最高点A时,对管壁下部的压力为0.75 mg,求a、b两球落地点间的距离。