如图,一个质量为0.6kg 的小球以某一初速度从P点水平抛出,恰好从光滑圆弧ABC的A点的切线方向进入圆弧(不计空气阻力,进入圆弧时无机械能损失)。已知圆弧的半径R=0.3m , θ="60" 0,小球到达A点时的速度 v="4" m/s 。(取g ="10" m/s2)求:(1)小球做平抛运动的初速度v0;(2)P点与A点的水平距离和竖直高度;(3)小球到达圆弧最高点C时对轨道的压力。
如图所示,在距水平地面高为H=0.4m处,水平固定一根长直光滑杆,杆上P处固定一定滑轮,滑轮可绕水平轴无摩擦转动,在P点的右边,杆上套一质量m=2kg的小球A.半径R=0.3m的光滑半圆形轨道竖直地固定在地面上,其圆心O在P点的正下方,在轨道上套有一质量m=2kg的小球B.用一条不可伸长的柔软细绳,通过定滑轮将两小球连接起来.杆和半圆形轨道在同一竖直面内,小球和小球均可看作质点,且不计滑轮大小的影响.现给小球A施加一个水平向右、大小为55N的恒力F,则:(1)求把小球B从地面拉到半圆形轨道顶点C的过程中力F做的功.(2)求小球B运动到C处时的速度大小.(3)小球B被拉到离地多高时小球A与小球B的速度大小相等?
有人设计了一种可测速的跑步机,测速原理如图所示,该机底面固定有间距为、长度为的平行金属电极。电极间充满磁感应强度为、方向垂直纸面向里的匀强磁场,且接有电压表和电阻,绝缘橡胶带上镀有间距为的平行细金属条,磁场中始终仅有一根金属条,且与电极接触良好,不计金属电阻,若橡胶带匀速运动时,电压表读数为,求:(1)橡胶带匀速运动的速率;(2)一根金属条每次经过磁场区域克服安培力做的功。
如图所示,在粗糙水平台阶上放置一质量m=0.5kg的小物块,它与水平台阶间的动摩擦因数μ=0.5,与台阶边缘O点的距离s=5m。在台阶右侧固定一个1/4圆弧挡板,圆弧半径R=1m,圆弧的圆心也在O点。今以O点为原点建立平面直角坐标系xOy。现用F=5N的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板。(,取g=10m/s2)(1)若小物块恰能击中挡板上的P点(OP与水平方向夹角为37°),求其离开O点时的速度大小;(2)为使小物块击中挡板,求拉力F作用的最短时间。
如图(a)所示,一物体以一定的速度v0沿足够长斜面向上运动,此物体在斜面上的最大位移与斜面倾角的关系由图(b)中的曲线给出。设各种条件下,物体运动过程中的摩擦系数不变。g=10m/s2试求(1)物体的初速度大小; (2)物体与斜面之间的动摩擦因数; (3)当θ为30°时最大位移。
某人在相距10m的A、B两点间练习折返跑,他由静止从A出发跑向B点,到达B点后立即返回A点。设加速过程和减速过程都是匀变速运动,加速过程和减速过程的加速度分别是4m/s2和8m/s2,运动过程中的最大速度为4m/s,从B点返回过程中达到最大速度后即保持该速度运动到A点,求:(1)从B点返回A点过程中以最大速度运动的时间;(2)从A运动到B点与从B运动到A两过程的平均速度大小之比。