如图是检验某种防护罩承受冲击能力的装置,MN为半径、固定于竖直平面内的光滑圆弧轨道,轨道上端切线水平。PQ为待检验的固定曲面,该曲面为在竖直面内截面半径的圆弧,圆弧下端切线水平且圆心恰好位于MN轨道的上端点N,M的下端相切处放置竖直向上的弹簧枪,可发射速度不同的质量的小钢珠,假设某次发射的钢珠沿轨道恰好能经过N点,水平飞出后落到PQ上的S点,取g =10m/s2。求:(1)小球到达N点时速度的大小;(2)发射该钢珠前,弹簧的弹性势能的大小;(3)钢珠落到圆弧PQ上S点时速度的大小。
图是一种花瓣形电子加速器简化示意图,空间有三个同心圆a、b、c围成的区域,圆a内为无场区,圆a与圆b之间存在辐射状电场,圆b与圆c之间有三个圆心角均略小于90°的扇环形匀强磁场区Ⅰ、Ⅱ和Ⅲ。各区感应强度恒定,大小不同,方向均垂直纸面向外。电子以初动能 E k 0 从圆b上P点沿径向进入电场,电场可以反向,保证电子每次进入电场即被全程加速,已知圆a与圆b之间电势差为U,圆b半径为R,圆c半径为 3 R ,电子质量为m,电荷量为e,忽略相对论效应,取 tan 22 . 5 ° = 0 . 4 。
(1)当 E k 0 = 0 时,电子加速后均沿各磁场区边缘进入磁场,且在电场内相邻运动轨迹的夹角 θ 均为45°,最终从Q点出射,运动轨迹如图中带箭头实线所示,求Ⅰ区的磁感应强度大小、电子在Ⅰ区磁场中的运动时间及在Q点出射时的动能;
(2)已知电子只要不与Ⅰ区磁场外边界相碰,就能从出射区域出射。当 E k 0 = keU 时,要保证电子从出射区域出射,求k的最大值。
算盘是我国古老的计算工具,中心带孔的相同算珠可在算盘的固定导杆上滑动,使用前算珠需要归零,如图所示,水平放置的算盘中有甲、乙两颗算珠未在归零位置,甲靠边框b,甲、乙相隔 s 1 = 3 . 5 × 10 - 2 m ,乙与边框a相隔 s 2 = 2 . 0 × 10 - 2 m ,算珠与导杆间的动摩擦因数 μ = 0 . 1 。现用手指将甲以 0 . 4 m/s 的初速度拨出,甲、乙碰撞后甲的速度大小为 0 . 1 m/s ,方向不变,碰撞时间极短且不计,重力加速度g取 10 m/s 2 。
(1)通过计算,判断乙算珠能否滑动到边框a;
(2)求甲算珠从拨出到停下所需的时间。
如图,间距为l的光滑平行金属导轨,水平放置在方向竖直向下的匀强磁场中,磁场的磁感应强度大小为B,导轨左端接有阻值为R的定值电阻,一质量为m的金属杆放在导轨上。金属杆在水平外力作用下以速度 v 0 向右做匀速直线运动,此时金属杆内自由电子沿杆定向移动的速率为 u 0 。设金属杆内做定向移动的自由电子总量保持不变,金属杆始终与导轨垂直且接触良好,除了电阻R以外不计其它电阻。
(1)求金属杆中的电流和水平外力的功率;
(2)某时刻撤去外力,经过一段时间,自由电子沿金属杆定向移动的速率变为 u 0 2 ,求:
(i)这段时间内电阻R上产生的焦耳热;
(ii)这段时间内一直在金属杆内的自由电子沿杆定向移动的距离。
如图,一长木板在光滑的水平面上以速度 v 0 向右做匀速直线运动,将一小滑块无初速地轻放在木板最右端。已知滑块和木板的质量分别为m和2m,它们之间的动摩擦因数为μ,重力加速度为g。
(1)滑块相对木板静止时,求它们的共同速度大小;
(2)某时刻木板速度是滑块的2倍,求此时滑块到木板最右端的距离;
(3)若滑块轻放在木板最右端的同时,给木板施加一水平向右的外力,使得木板保持匀速直线运动,直到滑块相对木板静止,求此过程中滑块的运动时间以及外力所做的功。
一列沿x轴正方向传播的简谐横波,其波源的平衡位置在坐标原点,波源在 0 ~ 4 s 内的振动图像如图(a)所示,已知波的传播速度为 0 . 5 m / s 。
(1)求这列横波的波长;
(2)求波源在4s内通过的路程;
(3)在图(b)中画出 t = 4 s 时刻的波形图。