(14分)如图所示,质量为m=2kg的小球穿在长L=1m的轻杆顶部,轻杆与水平方向成θ=37°的夹角,将小球由静止释放,1s后小球恰好到达轻杆底端,取g=10m/s2,sin37°=0.6,cos37°=0.8,求:⑴小球到达杆底时重力对它做功的功率;⑵小球与轻杆之间的动摩擦因数μ;⑶若在竖直平面内对小球施加一个垂直于轻杆方向的恒力F,小球从静止释放后,将以大小为1m/s2的加速度向下运动,则恒力F大小为多大?
如图所示空间分为Ⅰ,Ⅱ,Ⅲ三个足够长的区域,各边界面相互平行,其中Ⅰ,Ⅱ区域存在匀强电场EI=1.0×104 V/m,方向垂直边界面竖直向上;EⅡ=×105 V/m,方向水平向右,Ⅲ区域磁感应强度B=5.0 T,方向垂直纸面向里,三个区域宽度分别为d1=5.0 m,d2=4.0 m,d3= m.一质量m=1.0×10-8 kg、电荷量q=1.6×10-6C的粒子从O点由静止释放,粒子重力忽略不计.求:(1)粒子离开区域Ⅰ时的速度大小;(2)粒子从区域Ⅱ进入区域Ⅲ时的速度方向与边界面的夹角;(3)粒子从O点开始到离开Ⅲ区域时所用的时间.
如图甲所示,一正方形金属线框位于有界匀强磁场区域内,线框的右边紧贴着边界.t=0时刻对线框施加一水平向右的外力F,让线框从静止开始做匀加速直线运动,经过时间t0穿出磁场.图乙所示为外力F随时间t变化的图象.若线框质量为m、电阻R及图象中的F0、t0均为已知量,则根据上述条件,请你推出:(1)磁感应强度B的表达式;(2)线框左边刚离开磁场前瞬间的感应电动势E的表达式.
如图所示的电路中,两平行金属板A、B水平放置,两板间的距离d="40" cm。电源电动势E=24V,内电阻r="1" Ω,电阻R="15" Ω。闭合开关S,待电路稳定后,将一带正电的小球从B板小孔以初速度v0="4" m/s竖直向上射入板间。若小球带电量为q=1×10-2 C,质量为m=2×10-2 kg,不考虑空气阻力。那么,(1)滑动变阻器接入电路的阻值为多大时,小球恰能到达A板.(2)此时,电源的输出功率是多大.(取g="10" m/s2)
如图所示,中轴线PQ将矩形区域MNDC分成上、下两部分,上部分充满垂直纸面向外的匀强磁场,下部分充满垂直纸面向内的匀强磁场,磁感应强度皆为B.一质量为m、带电荷量为q的带正电粒子从P点进入磁场,速度与边MC的夹角θ=30°.MC边长为a,MN边长为8a,不计粒子重力.求:(1)若要该粒子不从MN边射出磁场,其速度最大值是多少?(2)若要该粒子恰从Q点射出磁场,其在磁场中的运行时间最少是多少?
在磁感应强度B=0.5T的匀强磁场中有一个正方形金属线圈abcd,边长L=0.2m。线圈的ad边与磁场的左侧边界重合,如图所示,线圈的电阻R=0.4Ω.用外力把线圈从磁场中移出有两种方法:一种是用外力把线圈从左侧边界匀速平移出磁场;另一种是以ad边为轴,用力使线圈匀速转动移出磁场,两种过程所用时间都是t=0.1s。求(1)线圈匀速平移出磁场的过程中,外力对线圈所做的功。(2)线圈匀速转动移出磁场的过程中,外力对线圈所做的功。