宇航员在一行星上以10m/s的速度竖直上抛一质量为0.2kg的物体,不计阻力,经2.5s后落回手中,已知该星球半径为7220km。(1)该星球表面的重力加速度多大?(2)要使物体沿水平方向抛出而不落回星球表面,沿星球表面抛出的速度至少是多大?(3)若物体距离星球无穷远处时其引力势能为零,则当物体距离星球球心r时其引力势能(式中m为物体的质量,M为星球的质量,G为万有引力常量)。问要使物体沿竖直方向抛出而不落回星球表面,沿星球表面抛出的速度至少是多大?
如图所示,一电荷量q=3×10-5C带正电的小球,用绝缘细线悬于竖直放置足够大的平行金属板中的O点。电键S闭合后,当小球静止时,细线与竖直方向的夹角α=37°。已知两板相距d=0.1m,电源电动势E=15v,内阻r=0.5Ω,电阻R1=3Ω,R2=R3=R4=8Ω。g取10m/s2,已知sin37°=0.6,cos37°=0.8。(1)电源的输出功率;(2)两板间电场强度大小;(3)带电小球质量。
如图所示,电源的电动势是6V,内电阻是0.5,小电动机M的线圈电阻为0.5,限流电阻R0为3,若电压表的示数为3V,试求:(1)电源的功率和电源的输出功率(2)电动机消耗的功率和电动机输出的机械功率
如图甲所示,圆形导线框中磁场B1的大小随时间周期性变化,使平行金属板M、N间获得如图乙的周期性变化的电压。M、N中心的小孔P、Q的连线与金属板垂直,N板右侧匀强磁场(磁感应强度为B2)的区域足够大。绝缘档板C垂直N板放置,距小孔Q点的距离为h。现使置于P处的粒子源持续不断地沿PQ方向释放出质量为m、电量为q的带正电粒子(其重力、初速度、相互间作用力忽略不计)。(1)在0~时间内,B1大小按的规律增大,此时M板电势比N板高,请判断此时B1的方向。试求,圆形导线框的面积S多大才能使M、N间电压大小为U?(2)若其中某一带电粒子从Q孔射入磁场B2后打到C板上,测得其落点距N板距离为2h,则该粒子从Q孔射入磁场B2时的速度多大?(3)若M、N两板间距d满足以下关系式:,则在什么时刻由P处释放的粒子恰能到达Q孔但不会从Q孔射入磁场?结果用周期T的函数表示。
如图所示,在矩形区域abcd内充满垂直纸面向里的匀强磁场,磁感应强度为B,在ad边中点的粒子源,在t=0时刻垂直于磁场发射出大量的同种带电粒子,所有粒子的初速度大小相同,方向与od的夹角分布在0~180°范围内。已知沿od方向发射的粒子在t=t0时刻刚好从磁场边界cd上的p点离开磁场,ab=1.5L,bc=L,粒子在磁场中做圆周运动的半径R=L,不计粒子的重力和粒子间的相互作用,求:(1)粒子在磁场中的运动周期T和粒子的比荷q/m;(2)粒子在磁场中运动的最长时间;(3)t=t0时刻仍在磁场中的粒子所处位置在某一圆弧上,在图中画出该圆弧并说明圆弧的圆心位置以及圆心角大小;
如图甲所示,在一对平行光滑的金属导轨的上端连接一阻值为R=4Ω的定值电阻,两导轨在同一平面内,质量为m=0.2kg,长为L=1.0m的导体棒ab垂直于导轨,使其从靠近电阻处由静止开始下滑,已知导体棒电阻为r=1Ω,整个装置处于垂直于导轨平面向上的匀强磁场中,导体棒下滑过程中加速度a与速度v的关系如图乙所示.求:(1)导轨平面与水平面间夹角θ(2)磁场的磁感应强度B;(3)若靠近电阻处到底端距离为S=7.5m,ab棒在下滑至底端前速度已达5m/s,求ab棒下滑到底端的整个过程中,电阻R上产生的焦耳热.