如图所示,AO是具有一定质量的均匀细杆,可绕O轴在竖直平面内自由转动.细杆上的P点与放在水平桌面上的圆柱体接触,圆柱体靠在竖直的挡板上而保持平衡.已知杆的倾角,球的重力大小为G,竖直挡板对球的压力大小为,各处的摩擦都不计,试回答下列问题:(1)作出圆柱体的受力分析图;(2)通过计算求出细杆AO对圆柱体的作用力和桌面对圆柱体支持力的大小.
如图7所示,一修路工在长为x=100 m的隧道中,突然发现一列火车出现在离右隧道口(A)x0=200 m处,修路工所处的位置在无论向左还是向右跑恰好能安全脱离危险的位置.问这个位置离隧道右出口距离是多少?他奔跑的最小速度至少应是火车速度的多少倍?
天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。(引力常量为G)
2010·兰州模拟)荡秋千是大家喜爱的一项体育运动.随着科技迅速发展,将来的某一天,同学们也会在其他星球上享受荡秋千的乐趣.假设你当时所在星球的质量为M,半径为R,可将人视为质点,秋千质量不计、摆长不变、摆角小于90°,引力常量为G.那么:(1)该星球表面附近时重力加速度g星等于多少?(2)若经过最低位置的速度为v0,你能上升的最大高度是多少?
如图所示,倾角为θ=30°的足够长的固定斜面上,在底端0处固定一垂直斜面的档板,斜面上OM段光滑,M点及以上均粗糙。质量为m的物块A在M点恰好能静止,有一质量为2m的光滑小物块B以初速度自N点滑向物块A,已知MN=L,AB间每次碰撞后即紧靠在一起但不粘连,每次AB与档板碰撞后均原速率弹回,求:(1)A、B第一次碰撞后紧靠在一起的初速度;(2)物块A在M点上方时,离M点的最大距离s;(3)系统由于摩擦和碰撞所产生的总内能E。
如图,在xoy直角坐标系中,在第三象限有一平行x轴放置的平行板电容器,板间电压U=1×102V。现有一质量m=1.0×10-12kg,带电量q=2.0×10-10C的带正电的粒子(不计重力),从下极板处由静止开始经电场加速后通过上板上的小孔,垂直x轴从A点进入第二象限的匀强磁场中。磁场方向垂直纸面向外,磁感应强度B=1T。粒子在磁场中转过四分之一圆周后又从B点垂直y轴进入第一象限,第一象限中有平行于y轴负方向的匀强电场E,粒子随后经过x轴上的C点,已知OC=1m。求:(1)粒子在磁场中做匀速圆周运动的半径r。(2)第一象限中匀强电场场强E的大小。