如图,一固定的斜面,其倾角为θ=30º,另一边与水平地面垂直,顶端有一定滑轮,跨过定滑轮的细线两端分别与物块A、B相连,A的质量为4m,B的质量为m。开始时,将B按在地上不动,然后放手,让A沿斜面下滑而B上升,所有摩擦均忽略不计。当A下滑距离为S时,细线突然断了。求B上升的最大高度。(设B不会与定滑轮相碰)
在用高级沥青铺设的高速公路上,对汽车的设计限速是30m/s。汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.6倍。(g=10m/s2)(1)如果汽车在这种高速路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?(2)如果高速路上设计了圆弧拱桥做立交桥,要使汽车能够安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少?
有两颗人造卫星,都绕地球做匀速圆周运行,已知它们的轨道半径之比r1:r2=4:1。对于这两颗卫星的运动,求:⑴线速度之比;(2)周期之比;(3)向心加速度之比。
从某高度处以12m/s的初速度水平抛出一物体,经2s落地,g取10m/s2,求:(1)物体抛出时的高度;(2)物体抛出点与落地点的水平距离;(3)速度方向与水平方向的夹角θ的正切tanθ。
如图所示,半径为R的3/4圆周轨道固定在竖直平面内,O为圆轨道的圆心,D为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC与圆心等高。质量为m的小球从离B点高度为h处的A点由静止开始下落,从B点进入圆轨道,小球能通过圆轨道的最高点,并且在最高点对轨道的额压力不超过3mg。现由物理知识推知,小球下落高度h与圆轨道半径R及小球经过D点时的速度vD之间的关系为。(1)求高度h应满足的条件; (2)通过计算说明小球从D点飞出后能否落在水平面BC上,并求落点与B点水平距离的范围。
如图所示,水平台面AB距地面的高度h=0.8m.有一滑块从A点以v0=6m/s的初速度在台面上做匀变速直线运动,滑块与平台间的动摩擦因数μ=0.25.滑块运动到平台边缘的B点后水平飞出。已知AB=2.2m。不计空气阻力,g取10m/s2。求:(1)滑块从B点飞出时的速度大小v;(2)滑块落地点到平台边缘的距离d。