某恒星远处有一颗行星,靠近行星周围有众多的卫星,且相对均匀地分布于行星周围。假设卫星绕行星的运动是匀速圆周运动,通过天文观测,测得离该行星最近的一颗卫星运动的轨道半径为,周期为。已知万有引力常量为G。 (1)求该行星的质量;(2)通过天文观测,发现离该行星很远处还有一颗卫星,其运动的轨道半径为,周期为,试估算该行星周围众多卫星的总质量。(3)通过天文观测发现,某一时刻行星跟距离自己最近的卫星以及距离自己很远的卫星正好分布在一条直线上,求再经过多长时间它们又将分布在一条直线上。
如图所示,一带电微粒质量为m=2.0×10-11kg、电荷量q=+1.0×10-5C,从静止开始经电压为U1=100V的电场加速后,水平进入偏转电压U2=100V两平行金属板间,偏转后,接着进入一个方向垂直纸面向里、宽度为D=20cm的匀强磁场区域。已知偏转电场金属板长L=20cm,两板间距d=10cm,重力忽略不计。求:带电微粒进入偏转电场时的速率v0;带电微粒从平行金属板射出时的偏转角θ;为使带电微粒不从磁场右边射出,该匀强磁场的磁感应强度B至少多大?
如图(a)所示,在以O为圆心,内外半径分别为R1和R2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U为常量,R1=R0,R2=3R0,一电荷量为+q,质量为m的粒子从内圆上的A点进入该区域,不计重力。已知粒子从外圆上以速度v1射出,求粒子在A点的初速度v0的大小。若撤去电场,如图19(b),已知粒子从OA延长线与外圆的交点C以速度v2射出,方向与OA延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间。在图(b)中,若粒子从A点进入磁场,速度大小为v3,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?
如图所示,平行金属极板A、B水平放置,A板带正电,B板带负电,两板间的电压为U,距离为2d,一个半径为d的绝缘光滑半圆形轨道,竖直放置在两极板中,轨道最高点、圆心O的连线与极板平行.在轨道最高点边缘处有一质量为m,电量为+ q的小球,由静止开始下滑。重力加速度为g。求:轨道最高点与最低点间的电势差;小球到达最低点时的速度大小;小球经过最低点时对轨道压力的大小。
如图所示,在x轴上方及下方存在方向垂直纸面向里的匀强磁场,上方磁场的磁感应强度大小为B、下方磁场的磁感应强度大小为。一质量为m、电量为q的带正电粒子从x轴上O点以速度v0垂直x轴向上射出。不计粒子重力。 求:射出后粒子第二次到达x轴时离O点的距离,并画出该过程粒子运动的轨迹;射出后粒子经过多长时间第二次到达x轴。
如图所示,半径R=0.4 m的光滑半圆轨道与粗糙的水平面相切于A点,质量为m=1 kg的小物体(可视为质点)在水平拉力F的作用下,从静止开始由C点运动到A点,物体从A点进入半圆轨道的同时撤去外力F,物体沿半圆轨道通过最高点B后做平抛运动,正好落在C点,已知xAC=2 m,F=15 N,g取10 m/s2,试求:物体在B点时的速度大小以及此时半圆轨道对物体的弹力大小;物体从C到A的过程中,摩擦力做的功.