如图所示,在倾角为θ的粗糙斜面上,有一个质量为m的物体被水平力F推着静止于斜面上,已知物体与斜面间的动摩擦因数为μ,且μ<tanθ,设最大静摩擦力等于滑动摩擦力,重力加速度为g,求:(1)若物体恰好不下滑,则推力F为多少?(2)若物体恰好不上滑,则推力F为多少?
1935年在苏联的一条直铁轨上,有一列火车因蒸汽不足而停驶,驾驶员把货车厢甲留在现场,只拖着几节车厢向前方不远的车站开进,但他忘了将货车厢刹好,使车厢在斜坡上以4 m/s的速度匀速后退,此时另一列火车乙正以16 m/s的速度向该货车厢驶来,驾驶技术相当好的驾驶员波尔西列夫立即刹车,紧接着加速倒退,结果恰好接住了货车厢甲,从而避免了相撞.设列车乙刹车过程和加速倒退过程均为匀变速直线运动,且加速度大小均为2 m/s2,求波尔西列夫发现货车厢甲向自己驶来而立即开始刹车时,两车相距多远?
如图所示,轻弹簧的两端与质量均为2m的B、C两物块固定连接,静止在光滑水平面上,物块C紧靠挡板但不粘连.另一质量为m的小物块A以速度V0从右向左与B发生弹性正碰,碰撞时间极短可忽略不计.(所有过程都在弹簧弹性限度范围内)求:(1)A、B碰后瞬间各自的速度;(2)弹簧第一次压缩最短与第一次伸长最长时弹性势能之比.
A、B为竖直墙壁上等高的两点,AO、BO为长度相等的两根轻绳,CO为一根轻杆。转轴C在AB中点D的正下方,AOB在同一水平面上。∠AOB=90º,∠COD=60º。若在O点处用轻绳悬挂一个质量为m的物体,求平衡后绳AO所受拉力的大小。
光滑水平面上放着质量mA=1kg的物块A与质量mB=2kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),在A、B间系一轻质细绳,细绳长度大于弹簧的自然长度,用手挡住B不动,此时弹簧弹性势能Ep=49J。如图所示,放手后B向右运动,绳在短暂时间内被拉断,之后B冲上与水平面相切的竖直半圆光滑轨道,其半径R=0.5m,B恰能到达最高点C取g=10m/s2,求(1)B落地点距P点的距离(墙与P点的距离很远)(2)绳拉断后瞬间B的速度vB的大小(3) 绳拉断过程绳对A所做的功W.
如图所示,一电子(其重力不计,质量为m、电荷量为e,由静止开始,经加速电场加速后,水平向右从两板正中间射入偏转电场.偏转电场由两块水平平行放置的长为l相距为d的导体板组成,当两板不带电时,电子通过两板之间的时间均为t0,当在两板间加电压为U0时,电子可射出偏转电场,并射入垂直纸面向里的匀强磁场,最后打在磁场右侧竖直放置的荧光屏上.磁场的水平宽度为s,竖直高度足够大。求:(1)加速电场的电压;(2)电子在离开偏转电场时的侧向位移;(3)要使电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多大?