如图所示,MN、PQ为间距L=0.5m足够长的平行导轨,NQ⊥MN。导轨平面与水平面间的夹角θ=37°,NQ间连接有一个R=5Ω的电阻。有一匀强磁场垂直于导轨平面,磁感应强度为B0=1T。将一根质量为m=0.05kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好,导轨与金属棒的电阻均不计。现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ平行。已知金属棒与导轨间的动摩擦因数μ=0.5,当金属棒滑行至cd处时已经达到稳定速度,cd距离NQ为s=2m。试解答以下问题:(g=10m/s2,sin37°=0.6,cos37°=0.8)
(1)当金属棒滑行至cd处时回路中的电流多大?
(2)金属棒达到的稳定速度是多大?
(3)当金属棒滑行至cd处时回路中产生的焦耳热是多少?
(4)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,则磁感应强度B应怎样随时间t变化(写出B与t的关系
式)?