如图6所示,静止在水平面上的纸带上放一质量m为的小金属块(可视为质点), 金属块离纸带右端距离为L, 金属块与纸带间动摩擦因数为μ.现用力向左将纸带从金属块下水平抽出,设纸带加速过程极短,可认为纸带在抽动过程中一直做匀速运动.求:(1)属块刚开始运动时受到的摩擦力的大小和方向;(2)要将纸带从金属块下水平抽出,纸带的速度v应满足的条件.
如图所示,封闭有一定质量理想气体的汽缸固定在水平桌面上,开口向右放置,活塞的横截面积为S。活塞通过轻绳连接了一个质量为m的小物体,轻绳跨在定滑轮上。开始时汽缸内外压强相同,均为大气压。汽缸内气体的温度,轻绳处在伸直状态。不计摩擦。缓慢降低汽缸内温度,最终使得气体体积减半,求: ①重物刚离地时气缸内的温度; ②气体体积减半时的温度; ③在下列坐标系中画出气体状态变化的整个过程。并标注相关点的坐标值。
在如图甲所示的平面坐标系内,有三个不同的静电场:第一象限内有电荷量为Q的点电荷在O点产生的电场E1,第二象限内有水平向右的匀强电场E2(大小未知),第四象限内有方向水平、大小按图乙变化的电场E3,E3以水平向右为正方向,变化周期。一质量为m,电荷量为+q的离子从(-x0,x0)点由静止释放,进入第一象限后恰能绕O点做圆周运动。以离子经过x轴时为计时起点,已知静电力常量为k,不计离子重力。求: (1)离子刚进入第四象限时的速度; (2)E2的大小; (3)当t=时,离子的速度; (4)当t=nT时,离子的坐标。
如图所示,一固定的足够长的粗糙斜面与水平面夹角.一个质量的小物体(可视为质点),在F=10 N的沿斜面向上的拉力作用下,由静止开始沿斜面向上运动.已知斜面与物体间的动摩擦因数,取.试求: (1)物体在拉力F作用下运动的加速度; (2)若力F作用1.2 s后撤去,物体在上滑过程中距出发点的最大距离s;
如图所示,质量均为m的小车和木箱紧挨着静止在光滑的水平冰面上,质量为2m的小孩站在小车上用力向右迅速推出木箱,木箱相对于冰面运动的速度为v,木箱运动到右侧墙壁时与竖直墙壁发生弹性碰撞,反弹后能被小孩接住,求: ①小孩接住箱子后共同速度的大小. ②若小孩接住箱子后再次以相对于冰面的速度v将木箱向右推出,木箱仍与竖直墙壁发生弹性碰撞,判断小孩能否再次接住木箱.
如图所示,光滑的定滑轮上绕有轻质柔软细线,线的一端系一质量为3m的重物,另一端系一质量为m、电阻为r的金属杆。在竖直平面内有间距为L的足够长的平行金属导轨PQ、EF,在QF之间连接有阻值为R的电阻,其余电阻不计,磁感应强度为B0的匀强磁场与导轨平面垂直,开始时金属杆置于导轨下端QF处,将重物由静止释放,当重物下降h时恰好达到稳定速度而匀速下降。运动过程中金属杆始终与导轨垂直且接触良好,(忽略所有摩擦,重力加速度为g),求: (1)电阻R中的感应电流方向; (2)重物匀速下降的速度v; (3)重物从释放到下降h的过程中,电阻R中产生的焦耳热QR; (4)若将重物下降h时的时刻记作t=0,速度记为v0,从此时刻 起,磁感应强度逐渐减小,若此后金属杆中恰好不产生感应电流,则磁感应强度B怎样随时间t变化(写出B与t的关系式)