下表是通过测量得到的一辆摩托车沿直线做加速运动时的速度随时间的变化.
请根据测量数据:(1)画出摩托车运动的v-t图象.(2)求摩托车在第一个10 s内的加速度.(3)求摩托车在最后15 s内的加速度.
如图,纸面内有E、F、G三点,∠GEF=30°,∠EFG=135°.空间有一匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.先使带有电荷量为q(q>0)的点电荷a在纸面内垂直于EF从F点射出,其轨迹经过G点;再使带有同样电荷量的点电荷b在纸面内与EF成一定角度从E点射出,其轨迹也经过G点.两点电荷从射出到经过G点所用的时间相同,且经过G点时的速度方向也相同.已知点电荷a的质量为m,轨道半径为R,不计重力.求:(1)点电荷a从射出到经过G点所用的时间;(2)点电荷b的速度大小.
短跑运动员完成100米赛跑的过程可简化为匀加速直线运动和匀速直线运动两个阶段.在一次比赛中,某运动员用11.00秒跑完全程.已知该运动员在匀加速直线运动阶段的第2秒内通过的距离为7.5米.试求:(1)运动员在匀加速直线运动阶段的加速度;(2)运动员在匀加速直线运动阶段通过的距离.
如图所示,在半径为R=的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度B,圆形区域右侧有一竖直感光板,从圆弧顶点P以速率v0的带正电粒子平行于纸面进入磁场,已知粒子的质量为m,电量为q,粒子重力不计.(1)若粒子对准圆心射入,求它在磁场中运动的时间;(2)若粒子对准圆心射入,且速率为v0,求它打到感光板上时速度的垂直分量;(3)若粒子以速度v0从P点以任意角入射,试证明它离开磁场后均垂直打在感光板上.
如图,在竖直平面内,AB为水平放置的绝缘粗糙轨道,CD为竖直放置的足够长绝缘粗糙轨道,AB与CD通过四分之一绝缘光滑圆弧形轨道平滑连接,圆弧的圆心为O,半径R=0.50m,轨道所在空间存在水平向右的匀强电场,场强的大小E=1.0×104 N/C,现有质量m=0.20kg,电荷量q=8.0×10﹣4 C的带电体(可视为质点),从A点由静止开始运动,已知sAB=1.0m,带电体与轨道AB、CD间的动摩擦因数均为0.5.假定带电体与轨道之间的最大静摩擦力和滑动摩擦力相等.求:(g=10m/s2)(1)带电体运动到圆弧形轨道C点时的速度;(2)带电体最终停在何处.
如图所示的电路中,电源电动势E=10V,内阻r=0.5Ω,电动机的电阻R0=1.0Ω,电阻R1=1.5Ω.电动机正常工作时,电压表的示数U1=3.0V.求:(1)电源释放的电功率;(即IE)(电路中总电流等于)(2)电动机消耗的电功率及将电能转化为机械能的功率.