如图7为一双线摆,在同一水平天花板上用两根等长的细线悬挂一小球,已知线长为L,摆线与水平方向夹角为θ,小球的尺寸忽略不计。当小球在垂直纸面做简谐运动时,求此摆的振动周期?(当地重力加速度为g)
如图所示,两根间距为L的金属导轨MN和PQ,电阻不计,左端向上弯曲,其余水平,水平导轨左端有宽度为d、方向竖直向上的匀强磁场I,右端有另一磁场II,其宽度也为d,但方向竖直向下,磁场的磁感强度大小均为B。有两根质量均为m、电阻均为R的金属棒a和b与导轨垂直放置,b棒置于磁场II中点C、D处,导轨除C、D两处(对应的距离极短)外其余均光滑,两处对棒可产生总的最大静摩擦力为棒重力的K倍,a棒从弯曲导轨某处由静止释放。当只有一根棒作切割磁感线运动时,它速度的减小量与它在磁场中通过的距离成正比,即。求:(1)若a棒释放的高度大于h0,则a棒进入磁场I时会使b棒运动,判断b棒的运动方向并求出h0为多少? (2)若将a棒从高度小于h0的某处释放,使其以速度v0进入磁场I,结果a棒以的速度从磁场I中穿出,求在a棒穿过磁场I过程中通过b棒的电量q和两棒即将相碰时b棒上的电功率Pb为多少?
如图所示,开口处有卡口、内截面积为S的圆柱形气缸开口向上竖直放置在水平面上,缸内总体积为V0,大气压强为p0,一厚度不计、质量为m的活塞(m=0.2p0S/g)封住一定量的理想气体,温度为T0时缸内气体体积为0.8V0,先在活塞上缓慢放上质量为2m的砂子,然后将缸内气体温度升高到2T0,求:(1)初始时缸内气体的压强P1 =? (2)在活塞上放上质量为2m的砂子时缸内气体的体积V2 =? (3)最后缸内气体的压强P4=?
如图所示,两根间距为L的金属导轨MN和PQ,电阻不计,左端弯曲部分光滑,水平部分导轨与导体棒间的滑动摩擦因数为μ,水平导轨左端有宽度为d、方向竖直向上的匀强磁场Ⅰ,右端有另一磁场Ⅱ,其宽度也为d,但方向竖直向下,两磁场的磁感强度大小均为B0,相隔的距离也为d.有两根质量为m、电阻均为R的金属棒a和b与导轨垂直放置,b棒置于磁场Ⅱ中点C、D处.现将a棒从弯曲导轨上某一高处由静止释放并沿导轨运动下去.(1)当a棒在磁场Ⅰ中运动时,若要使b棒在导轨上保持静止,则a棒刚释放时的高度应小于某一值h0,求h0的大小;(2)若将a棒从弯曲导轨上高度为h(h<h0)处由静止释放,a棒恰好能运动到磁场Ⅱ的左边界处停止,求a棒克服安培力所做的功;(3)若将a棒仍从弯曲导轨上高度为h(h<h0)处由静止释放,为使a棒通过磁场Ⅰ时恰好无感应电流,可让磁场Ⅱ的磁感应强度随时间而变化,将a棒刚进入磁场Ⅰ的时刻记为t=0,此时磁场Ⅱ的磁感应强度为B0,试求出在a棒通过磁场Ⅰ的这段时间里,磁场Ⅱ的磁感应强度随时间变化的关系式。
如图所示,在一次消防演习中,消防员练习使用挂钩从高空沿滑杆由静止滑下,滑杆由AO、OB两段直杆通过光滑转轴连接地O处,可将消防员和挂钩均理想化为质点,且通过O点的瞬间没有机械能的损失。已知AO长L1=5m,OB长L2=10m,两面竖直墙MN的间距d=11m。滑杆A端用铰链固定在墙上,可自由转动。B端用铰链固定在另一侧墙上。为了安全,消防员到达对面墙的速度大小不能超过6m/s,挂钩与两段滑杆间动摩擦因数均为μ=0.8。(sin37°=0.6,cos37°=0.8)(1)若测得消防员下滑时, OB段与水平方向间的夹角始终为37°,求消防员在两滑杆上运动时加速度的大小及方向;(2)若B端在竖直墙上的位置可以改变,求滑杆端点A、B间的最大竖直距离。
如图所示,电源内阻r=1Ω,R1=2Ω,R2=6Ω,灯L上标有“3V、1.5W”的字样,当滑动变阻器R3的滑片P移到最右端时,电流表示数为1A,灯L恰能正常发光。(1)求电源的电动势;(2)求当P移到最左端时,电流表的示数;(3)当滑动阻器的Pb段电阻多大时,变阻器R3上消耗的功率最大?最大值多大?