某品牌电热水壶的铭牌上标着如下表所示的数据。请计算:(1)该电热水壶的电阻;(2)当电热水壶装满水后,从20℃加热到100℃,水吸收的热量;(3)在额定电压下,要放出这些热量,电热水壶工作的时间。(不计热量损失)(4)如果在用电高峰时间内用电热水壶烧水,电压只有200V左右,这时电热水壶发热时的功率大约是多大?
在一绝缘支架上,固定着一个带正电的小球A,A又通过一长为10cm的绝缘细绳连着另一个带负电的小球B,B的质量为0.1kg,电荷量为×10-6C,如图所示,将小球B缓缓拉离竖直位置,当绳与竖直方向的夹角为60°时,将其由静止释放,小球B将在竖直面内做圆周运动.已知释放瞬间绳刚好张紧,但无张力. g取10m/s2.求 (1)小球A的带电荷量; (2)释放瞬间小球B的加速度大小; (3)小球B运动到最低点时绳的拉力.
(15分) 如图所示,有一个可视为质点的质量为m=1 kg的小物块,从光滑平台上的A点以v0=3 m/s的初速度水平抛出,到达C点时,恰好沿C点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D点的质量为M=3 kg的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R=0.5 m,C点和圆弧的圆心连线与竖直方向的夹角θ=53°,不计空气阻力,取重力加速度g=10 m/s2.求: (1)A、C两点的高度差; (2)小物块刚要到达圆弧轨道末端D点时对轨道的压力; (3)要使小物块不滑出长木板,木板的最小长度.(sin 53°=0.8,cos 53°=0.6)
(15分)如图所示,水平虚线L1、L2之间是匀强磁场,磁场方向水平向里,磁场高度为h.竖直平面内有一等腰梯形线框,底边水平,其上下边长之比为5:1,高为2h.现使线框AB边在磁场边界L1的上方h高处由静止自由下落,当AB边刚进入磁场时加速度恰好为0,在DC边刚进入磁场前的一段时间内,线框做匀速运动。求: (1)DC边刚进入磁场时,线框的加速度; (2)从线框开始下落到DC边刚进入磁场的过程中,线框损失的机械能和重力做功之比;
(12分)如图所示,坐标平面第Ⅰ象限内存在大小为E=4×105 N/C、方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂直纸面向里的匀强磁场.质荷比为=4×10-10 kg/C的带正电粒子从x轴上的A点以初速度v0=2×107 m/s垂直x轴射入电场,OA=0.2 m,不计重力.求: (1)粒子经过y轴时的位置到原点O的距离; (2)若要求粒子不能进入第三象限,求磁感应强度B的取值范围(不考虑粒子第二次进入电场后的运动情况.)
如图所示,光滑固定的竖直杆上套有一个质量m=0.4kg的小物块A,不可伸长的轻质细绳通过固定在墙壁上、大小可忽略的定滑轮D,连接物块A和小物块B,虚线CD水平,间距d=1.2m,此时连接物块A的细绳与竖直杆的夹角为37,物块A恰能保持静止.现在物块B的下端再挂一个小物块Q,物块A可从图示位置上升并恰好能到达C处.不计摩擦和空气阻力,、,重力加速度g取10m/s2.求: (1)物块A到达C处时的加速度大小; (2)物块B的质量M; (3)物块Q的质量mo.