短跑名将博尔特在北京奥运会上创造了100m和200m短跑项目的新世界纪录,他的成绩分别是9.69s和l9.30s。假定他在100m比赛时从发令到起跑的反应时间是0.15s,起跑后做匀加速运动,达到最大速率后做匀速运动。200m比赛时,反应时间及起跑后加速阶段的加速度和加速时间与l00m比赛时相同,但由于弯道和体力等因素的影响,以后的平均速率只有跑l00m时最大速率的96%。求:(1)加速所用时间和达到的最大速率;(2)起跑后做匀加速运动的加速度。(结果保留两位小数)
(9分)铁路转弯处的弯道半径r是根据地形决定的。弯道处要求外轨比内轨高,其内外轨高度差h的设计不仅与r有关,还取决于火车在弯道上的行驶速率。下图表格中是铁路设计人员技术手册中弯道半径r及与之对应的轨道的高度差h。弯道半径r/m 660 330 220 165 132 110内外轨高度差h/mm 50 100 150 200 250 300(1)根据表中数据,试导出h和r关系的表达式,并求出当r=440m时,h的设计值;(2)铁路建成后,火车通过弯道时,为保证绝对安全,要求内外轨道均不向车轮施加侧向压力,又已知我国铁路内外轨的间距设计值为L=1435mm,结合表中数据,算出我国火车的转弯速率v(以km/h为单位,结果取整数;路轨倾角很小时,正弦值按正切值处理)(g取9.8m/s2)(3)随着人们生活节奏加快,对交通运输的快捷提出了更高的要求。为了提高运输力,国家对铁路不断进行提速,这就要求铁路转弯速率也需要提高。请根据上述计算原理和上述表格分析提速时应采取怎样的有效措施?
如图所示,某人站在一平台上,用长L=0.5m的轻细线拴一个质量为10kg的小球,让它在竖直平面内以O点为圆心做圆周运动,当小球转与最高点A时,人突然撒手。经0.8S小球落地,落地时小球速度方向与水平面成53°,(g=10m/s2)求:(1)A点距地面高度;(2)小球离开最高点时的速度;(3)在不改变其他条件的情况下,要使小球从A处抛出落至B时的位移最小,人突然撒手时小球的速度为多少。
(8分)质量为1kg的物块从斜面底端以10m/s的速度滑上斜面,已知斜面的倾斜角为37°,物块与斜面间的动摩擦因数为0.5,已知在整个过程中,斜面都静止不动,且斜面足够长。求(1)从物块滑上斜面到离开斜面的过程中,物块所受各力对物块做的功及合力物块做的功;(2)下滑过程重力做功的平均功率与回到斜面底端时重力的瞬时功率。
如图所示平面直角坐标系xoy位于竖直平面内,在坐标系的整个空间存在竖直向上的匀强电场,在区域Ⅰ(0≤x≤L)还存在匀强磁场,磁场方向垂直于xoy平面向里。在x轴上方有一光滑弧形轨道PQ,PQ两点间竖直高度差为。弧形轨道PQ末端水平,端口为Q (3L,);某时刻一质量为m、带电荷量为+q的小球b从y轴上的M点进入区域I,其速度方向沿x轴正方向;小球b在I区内做匀速圆周运动。b进入磁场的同时,另一个质量也为m、带电荷量为-q的小球a从P点由静止释放。两小球刚好在x=2L上的N点(没具体画出)反向等速率相碰。重力加速度为g。求:(l)电场强度E;(2)a球到达N点时的速度v;(3)M点的坐标。
在如图所示的竖直平面内,有一固定在水平地面的光滑平台。平台右端B与静止的水平传送带平滑相接,传送带长L=lm.有一个质量为m=0.5kg,带电量为q=+10-3C的滑块,放在水平平台上。平台上有一根轻质弹簧左端固定,右端与滑块接触但不连接。现用滑块缓慢向左移动压缩弹簧,且弹簧始终在弹性限度内。在弹簧处于压缩状态时,若将滑块静止释放,滑块最后恰能到达传送带右端C点。已知滑块与传送带间的动摩擦因数为μ="0.20" (g取10m/s2)求:(1)滑块到达B点时的速度vB,及弹簧储存的最大弹性势能EP;(2)若传送带以1.5m/s的速度沿顺时针方向匀速转动,释放滑块的同时,在BC之间加水平向右的匀强电场E=5×102N/C。滑块从B运动到C的过程中,摩擦力对它做的功。