质量m=1 kg的物体,在水平拉力F(拉力方向与物体初速度方向相同)的作用下,沿粗糙水平面运动,经过位移4 m时,拉力F停止作用,运动到位移是8 m时物体停止,运动过程中Ek-x的图线如图所示.(g取10 m/s2)求:(1)物体的初速度多大?(2)物体和水平面间的动摩擦因数为多大?(3)拉力F的大小.
带电量为q,质量为m的原子核由静止开始经电压为U1的电场加速后进入一个平行板电容器,进入时速度和电容器中的场强方向垂直.已知:电容器的极板长为L,极板间距为d,两极板的电压为U2,重力不计,求:(1)经过加速电场后的速度v0;(2)离开电容器电场时的偏转量y;(3)刚离开电场时刻的动能Ek和速度方向与水平方向夹角θ的正切值.
如图所示,一质量为m=×10﹣2kg,带电量为q=10﹣6C的小球(可视为质点),用绝缘细线悬挂在水平向右的匀强电场中的定点O,设电场足够大,静止时悬线向右与竖直方向成30°角.重力加速度g=10m/s2. 则:(1)求电场强度E;(2)若在某时刻将细线突然剪断,设定点O距离地面的竖直高度为H=10m,绳长L=m,求小球的落地时间(小球在运动过程电量保持不变).
如图所示,固定的斜面长度为2L,倾角为θ,上、下端垂直固定有挡板A、B.质量为m的小滑块,与斜面间的动摩擦因数为μ,最大静摩擦力与滑动摩擦力大小相等,滑块所受的摩擦力大于其重力沿斜面的分力,滑块每次与挡板相碰均无机械能损失.现将滑块由斜面中点P以初速度v0沿斜面向下运动,滑块在整个运动过程与挡板碰撞的总次数为k(k>2),重力加速度为g,试求:(1)滑块第一次到达挡板时的速度大小v;(2)滑块上滑过程的加速度大小a和到达挡板B时的动能Ekb;(3)滑块滑动的总路程s.
如图所示,轻杆的一端用铰链固定在竖直转轴OO′上的O端,另一端固定一小球,轻杆可在竖直平面内自由转动,当转轴以某一角速度匀速转动时,小球在水平面内做匀速圆周转动,此时轻杆与竖直转轴OO′的夹角为37°.已知转轴O端距离水平地面的高度为h,轻杆长度为L,小球的质量为m,重力加速度为g,取sin37°≈0.6,cos37°≈0.8,求:(1)小球做匀速圆周运动的线速度v.(2)若某时刻小球从轻杆上脱落,小球的落地点到转轴的水平距离d.(3)若缓慢增大转轴的转速,求轻杆与转轴的夹角从37°增加到53°的过程中,轻杆对小球所做的功W.
如图所示,轨道ABCD位于同一竖直平面内,AB段是光滑的四分之一的圆弧轨道,BC段是高H=3.2m、倾角θ=45°的斜面,CD段是足够长的水平轨道.一小球从AB轨道的某点由静止开始下滑,并从B点水平飞出,不计空气阻力,取g=10m/s2.(1)若小球从B点飞出后恰好落在C点,求此情形小球在B点的速度大小vB和释放点到B点的高度h0;(2)若释放点到B点的高度h1=1.8m,求小球第一次落到轨道前瞬间速度方向与水平面夹角α的正切值;(3)若释放点到B点的高度h2=0.2m,求小球第一次落到轨道的位置到B点的距离L.