两块高度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为mA=2kg,mB=0.9kg。它们的下底面光滑,但上表面粗糙。另有一质量mc=0.1kg的物体C(可视为质点)以vC=10m/s的速度恰好水平地滑到A的上表面,物体C最后停在B上,此时B、C的共同速度v=0.5m/s,求木块A的速度为多大?
(19分)如图所示,在xoy平面内,以O'(0,R)为圆心、R为半径的圆内有垂直平面向外的匀强磁场,x轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等。第四象限有一与x轴成45°角倾斜放置的挡板PQ,P、Q两点在坐标轴上,且OP两点间的距离大于2R,在圆形磁场的左侧0<y<2R的区间内,均匀分布着质量为m、电荷量为+q的一簇带电粒子,当所有粒子均沿x轴正向以速度v射入圆形磁场区域时,粒子偏转后都从O点进人x轴下方磁场,结果有一半粒子能打在挡板上。不计粒子重力、不考虑粒子间相互作用力。求:(1)磁场的磁感应强度B的大小;(2)挡板端点P的坐标;(3)挡板上被粒子打中的区域长度。
(13分)如图所示,某滑冰运动员参加直线滑行练习,在滑行时,左右脚交替向后蹬冰,每次蹬冰的时间t1=1s,冰面给人水平向前的动力F=165N,左右脚交替时有t2=0.5s的时间不用蹬冰。已知整个过程中运动员受到的阻力f=55N,运动员总质量rn=55kg,设运动员由静止开始滑行,求0-3s内运动员的位移。
如图所示,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平导轨上,弹簧处在原长状态。滑块A从半径为R的光滑圆弧槽无初速滑下,从P点滑上水平导轨,当A滑过距离sl=R时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连.最后A恰好返回出发点P并停止.在A、B压缩弹簧过程始终未超过弹簧的弹性限度。已知滑块A和B质量均为m(A、B可视为质点),且与导轨的滑动摩擦因数都为=0.1,重力加速度为g,试求:(1)滑块A从圆弧滑到P点时对导轨的压力,(2)A、B碰后瞬间滑块A的速度,(3)运动过程中弹簧最大形变量S2
如图所示,质量为mA=2kg的平板车A静止在水平地面上,车长d =5m。物块B静止在平板车左端,在物块B正前方某处。有一小球C,球C通过长l = 0.32m的细绳与固定点O相连,球C恰好与物块B等高,且C始终不与平板车A接触。在t = 0时刻,平板车A突然获得水平初速度v0开始向左运动,后来某一时刻物块B与球C发生弹性碰撞,碰后球C恰好能绕O点在竖直平面内作圆周运动。若B、C可视为质点,mB=mC= 1kg,物块B与平板车A、平板车A与地面之间的动摩擦因数均为µ=0.2,g取10m/s2,求: (1)B、C碰撞瞬间,细绳拉力的大小? (2)B、C碰撞前瞬间物块B的速度大小。 (3)若B、C碰撞时,物块B在平板车的中间位置,且t0=1.5s时平板车A的速度变为v1 =5m/s,则 物块B是在加速阶段还是减速阶段与球C相碰撞?小车的初速度v0多大?
如图,两根足够长平行光滑的金属导轨相距为l,导轨与水平面夹角为θ,并处于磁感应强度为B2、方向垂直导轨平面向下的匀强磁场中。两金属导轨的上端与阻值为R的灯泡连接,并连接水平放置、长和宽都为d的平行金属板,板内存在垂直纸面向里的磁感应强度为B1的匀强磁场。长为l的金属棒ab垂直于金属导轨,且始终与导轨接触良好。当金属棒固定不动时,质量为m、电荷量为q的粒子流沿中线射入金属板内,恰好在金属板的左下边沿穿出。粒子重力不计,重力加速度为g,导轨和金属棒的电阻不计。(1) 粒子流带何种电荷,速度多大?(2) 现将金属棒由静止释放,待棒沿导轨匀速下滑后,粒子流水平通过,求金属棒质量M。