在水平放置的可旋转的圆台上面放一劲度系数为k、质量可忽略不计的轻弹簧。它的一端固定在轴上,另一端拴一质量为m的小物体A,这时弹簧没有形变,长为l0,如图所示。A与盘面间的动摩擦因数为μ,且设最大静摩擦力等于滑动摩擦力。盘由静止起转动,角速度逐渐增大。(1)当盘以某角速度ω0旋转时,A相对盘面滑动,求ω0。(2)当角速度增为ω1时,求A随盘作圆周运动的最大半径l1。(3)当角速度由ω1减小时,物体能在半径为l1的原轨道上作圆周运动,求这时的角速度ω2。
如下图所示,两光滑金属导轨,间距d=0.2m,在桌面上的部分是水平的,处在磁感应强度B=0.1T、方向竖直向下的有界磁场中,电阻R=3Ω,桌面高H=0.8m,金属杆ab质量m=0.2kg、电阻r=1Ω,在导轨上距桌面h=0.2m高处由静止释放,落地点距桌面左边缘的水平距离s=0.4m,g=10m/s2,求: (1)金属杆刚进入磁场时,R上的电流大小和方向; (2)整个过程中R上放出的热量.
在范围足够大,方向竖直向下的匀强磁场中,B=0.2 T,有一水平放置的光滑框架,宽度为L=0.4 m,如图所示,框架上放置一质量为0.05 kg,电阻为1 Ω的金属杆cd,框架电阻不计.若cd杆以恒定加速度a=2 m/s2,由静止开始做匀变速运动,则 (1)在5 s内平均感应电动势是多少? (2)第5 s末,回路中的电流多大? (3)第5 s末,作用在cd杆上的水平外力多大?
发电站通过升压变压器、输电导线和降压变压器把电能输送到用户(升压变压器和降压变压器都可视为理想变压器),输电全过程的线路图如图所示,求: (1)若发电机的输出功率是100 kW,输出电压是250 V,升压变压器的原副线圈的匝数比为1∶25,求升压变压器的输出电压和输电导线中的电流; (2)若输电导线中的电功率损失为输入功率的4%,求输电导线的总电阻。
如图所示,半径R =" 0.8" m的光滑绝缘导轨固定于竖直平面内,加上某一方向的匀强电场时,带正电的小球沿轨道内侧做圆周运动。圆心O与A点的连线与竖直成一角度θ,在A点时小球对轨道的压力FN="120" N,此时小球动能最大。若小球的最大动能比最小动能多32 J,且小球能够到达轨道上的任意一点(不计空气阻力)。则: ⑴小球的最小动能是多少? ⑵小球受到重力和电场力的合力是多少? ⑶现小球在动能最小的位置突然撤去轨道,并保持其他量都不变,若小球在0.04 s后的动能与它在A点时的动能相等,求小球的质量。
如图所示,跨过轻质定滑轮的细绳两端,一端连接质量为m的物体A,另一端通过一轻质弹簧与质量为M的物体B连接,B物体静止在地面上,用手托着A物体,在A距地面高h处时,细绳刚好被拉直、弹簧无形变。今将A物体从h高处无初速释放,A物体恰好能到达地面,且A到达地面时,B物体对地面的压力恰好减为零。已知重力加速度为g,弹簧的弹性势能与劲度系数k、弹簧的伸长量x的关系是:E弹=kx2。两个物体均可视为质点,不计绳子和滑轮的质量,不计滑轮轴上的摩擦力和空气阻力。问: (1)A、B两物体的质量之比为多少? (2)现将A、B两物体的初始位置互换,再让B物体从h高处无初速释放,当A物体刚要离开地面时,B物体的速度是多少?