如图所示,水平面上有两根光滑金属导轨平行固定放置,导轨的电阻不计,间距为l =" O.5" m,左端通过导线与阻值R =3Ω的电阻连接,右端通过导线与阻值为RL=6Ω的小灯泡L连接,在CDEF矩形区域内有竖直向上,磁感应强度B = O.2T的匀强磁场。一根阻值r =O.5Ω、质量m = O.2kg的金属棒在恒力F ="2" N的作用下由静止开始从AB位置沿导轨向右运动,经过t ="1" s刚好进入磁场区域。求金属棒刚进入磁场时:金属棒切割磁场产生的电动势;小灯泡两端的电压和金属棒受安培力。
如图所示,一质量为m的物块在与水平方向成θ的力F的作用下从A点由静止开始沿水平直轨道运动,到B点后撤去力F, 物体飞出后越过“壕沟”落在平台EG段.已知物块的质量m =1kg,物块与水平直轨道间的动摩擦因数为μ=0.5,AB段长L=10m,BE的高度差h =0.8m,BE的水平距离 x =1.6m.若物块可看做质点,空气阻力不计,g取10m/s2.(1)要越过壕沟,求物块在B点最小速度v的大小;(2)若θ=370,为使物块恰好越过“壕沟”,求拉力F的大小;(3)若θ大小不确定,为使物块恰好越过“壕沟”,求力F的最小值(结果可保留根号).
如图所示,质量m1=3 kg的平板小车B在光滑水平面上以v1=1 m/s的速度向左匀速运动.当t=0时,质量m2=2kg的小铁块A以v2=3m/s的速度水平向右滑上小车,A与小车间的动摩擦因数为μ=0.2.若A最终没有滑出小车,取水平向右为正方向,g=10m/s2.求:(1)A在小车上停止运动时小车的速度大小 (2)小车至少多长 (3)在图乙所示的坐标纸中画出1.5 s内小车B运动的速度与时间图像.
随着机动车数量的增加,交通安全问题日益凸显。分析交通违法事例,将警示我们遵守交通法规,珍惜生命。一货车严重超载后的总质量为49t,以54km/h的速率匀速行驶。发现红灯时司机刹车,货车即做匀减速直线运动,加速度的大小为2.5m/s2(不超载时则为5m/s2)。(1)若前方无阻挡,问从刹车到停下来此货车在超载及不超载时分别前进多远?(2)若超载货车刹车时正前方25m处停着总质量为1t的轿车,两车将发生碰撞,设相互作用0.1 s后获得相同速度,问货车对轿车的平均冲力多大?
甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。在第一段时间间隔内,两辆汽车的加速度大小不变,汽车乙的加速度大小是甲的两倍;在接下来的相同时间间隔内,汽车甲的加速度大小增加为原来的两倍,汽车乙的加速度大小减小为原来的一半。求甲乙两车各自在这两段时间间隔内走过的总路程之比。
摩天大楼中一部直通高层的客运电梯,行程超过百米。电梯的简化模型如1所示。考虑安全、舒适、省时等因索,电梯的加速度a是随时间t变化的。已知电梯在t = 0时由静止开始上升,a - t图像如图2所示。电梯总质最m = 2.0× kg。忽略一切阻力,重力加速度g取10m/s2。 (1)求电梯在上升过程中受到的最大拉力F1和最小拉力F2; (2)类比是一种常用的研究方法。对于直线运动,教科书中讲解了由v - t图像求位移的方法。请你借鉴此方法,对比加速度的和速度的定义,根据图2所示a - t图像,求电梯在第1s内的速度改变量△v1和第2s末的速率v2; (3)求电梯以最大速率上升时,拉力做功的功率p:再求在0~11s时间内,拉力和重力对电梯所做的总功W。