如图所示,圆管构成的半圆形竖直轨道固定在水平地面上,轨道半径为R,MN为直径且与水平面垂直,直径略小于圆管内径的小球A以某一初速度冲进轨道,到达半圆轨道最高点M时与静止于该处的质量与A相同的小球B发生碰撞,碰后两球粘在一起飞出轨道,落地点距N为2R。重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求:粘合后的两球从飞出轨道到落地的时间t;小球A冲进轨道时速度v的大小。
如图所示,一内壁光滑的细管弯成半径为R=0.4m的半圆形轨道CD,竖直放置,其内径略大于小球的直径,水平轨道与竖直半圆轨道在C点连接完好。置于水平轨道上的弹簧左端与竖直墙壁相连,B处为弹簧的自然状态。将一个质量为m=0.8kg的小球放在弹簧的右侧后,用力向左侧推小球而压缩弹簧至A处,然后将小球由静止释放,小球运动到C处后对轨道的压力为F1=58N。水平轨道以B处为界,左侧AB段长为x=0.3m,与小球的动摩擦因数为,右侧BC段光滑。g=10m/s2,求: (1)弹簧在压缩时所储存的弹性势能。 (2)小球运动到轨道最高处D点时对轨道的压力大小。
某研究小组为测量一个遥控电动小车的额定功率,进行了如下实验: ①用天平测出电动小车的质量为0.4kg; ②将电动小车、纸带和打点计时器按如图所示安装; ③接通打点计时器(其打点周期为0.02s); ④使电动小车以额定功率加速运动,达到最大速度一段时间后关闭小车电源,待小车静止时再关闭打点计时器(设小车在整个过程中小车与纸带所受的阻力恒定)。在上述过程中,打点计时器在纸带上所打的部分点迹如图所示(已知纸带左端与小车相连)请分析纸带数据,回答下列问题: (1)电动小车运动的最大速度为_______ m/s (2)电动小车关闭电源后加速度大小为m/s2 (3)电动小车的额定功率为W。
一辆值勤的警车停在平直公路边,当警员发现从他旁边以v="10" m/s的速度匀速行驶的货车有违章行为时,决定前去追赶,经t0="2s" 警车发动起来,以加速度a="2" m/s2做匀加速运动,试问: (1)在警车追上货车之前,两车间的最大距离是多少? (2)若警车能达到的最大速度是vm="12" m/s,达到最大速度后匀速运动。则警车发动起来后至少要多长的时间才能追上违章的货车?
在某路段相邻较近的两红绿灯路口之间,一辆汽车在第一个路口从静止开始以5m/s2的加速度做匀加速运动,行驶40m,立即以1.25 m/s2的加速度做匀减速直线运动,到达下一个路口时刚好停止,求: (1)汽车从启动到停止所用的时间; (2)两红绿灯路口间的距离.
一个小球从距离地面20m的高空自由下落,g取10m/s2,求 (1)小球落地时的速度大小? (2)小球从开始运动到落地的总时间为多少? (3)小球落地前最后1s内的位移大小?