A、B两物体(视为质点)在同一直线上同时出发向同一方向运动,物体A从静止开始做匀加速直线运动,加速度的大小a=2m/s2,物体B在A的后面相距L=16m处,以v1=10m/s的速度做匀速运动。两物体追逐时,互从近旁通过,不会相碰。求:经过多长时间物体B追上物体A?共经过多长时间A、B两物体再次相遇?A、B两物体两次相遇之间相距最远的距离是多少?
如图所示,一质量为m、长为L的木板A静止在光滑水平面上,其左侧固定一劲度系数为k的水平轻质弹簧,弹簧原长为l0,右侧用一不可伸长的轻质细绳连接于竖直墙上。现使一可视为质点小物块B以初速度v0从木板的右端无摩擦地向左滑动,而后压缩弹簧。设B的质量为λm,当时细绳恰好被拉断。已知弹簧弹性势能的表达式,其中k为劲度系数,x为弹簧的压缩量。求:(1)细绳所能承受的最大拉力的大小Fm(2)当时,小物块B滑离木板A时木板运动位移的大小sA(3)当λ=2时,求细绳被拉断后长木板的最大加速度am的大小(4)为保证小物块在运动过程中速度方向不发生变化,λ应满足的条件
如图甲所示,在真空中,半径为R的圆形区域内存在匀强磁场,磁场方向垂直纸面向外。在磁场左侧有一对平行金属板M、N,两板间距离也为R,板长为L,板的中心线O1O2与磁场的圆心O在同一直线上。置于O1处的粒子发射源可连续以速度v0沿两板的中线O1O2发射电荷量为q、质量为m的带正电的粒子(不计粒子重力),MN两板不加电压时,粒子经磁场偏转后恰好从圆心O的正下方P点离开磁场;若在M、N板间加如图乙所示交变电压UMN,交变电压的周期为,t=0时刻入射的粒子恰好贴着N板右侧射出。求(1)匀强磁场的磁感应强度B的大小(2)交变电压电压U0的值(3)若粒子在磁场中运动的最长、最短时间分别为t1、t 2 ,则它们的差值为多大?
如图所示,一木箱静止、在长平板车上,某时刻平板车以a=2.5m/s2的加速度由静止开始向前做匀加速直线运动,当速度达到v=9m/s时改做匀速直线运动,己知木箱与平板车之间的动脒擦因数μ=0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g取10m/s2)。求:(1)车在加速过程中木箱运动的加速度的大小;(2)木箱做加速运动的时间和位移的大小;(3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。
“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的电势为 ,内圆弧面CD的电势为,足够长的收集板MN平行边界ACDB,ACDB与MN板的距离为L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB的粒子再次返回。(1)求粒子到达O点时速度的大小;(2)如图2所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB圆弧面的粒子经O点进入磁场后最多有能打到MN板上,求所加磁感应强度的大小;(3)如图3所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个垂直MN的匀强电场,电场强度的方向如图所示,大小,若从AB圆弧面收集到的某粒子经O点进入电场后到达收集板MN离O点最远,求该粒子到达O点的速度的方向和它在PQ与MN间运动的时间。
如图1所示,一端封闭的两条平行光滑长导轨相距L,距左端L处的右侧一段被弯成半径为的四分之一圆弧,圆弧导轨的左、右两段处于高度相差的水平面上。以弧形导轨的末端点O为坐标原点,水平向右为x轴正方向,建立Ox坐标轴。圆弧导轨所在区域无磁场;左段区域存在空间上均匀分布,但随时间t均匀变化的磁场B(t),如图2所示;右段区域存在磁感应强度大小不随时间变化,只沿x方向均匀变化的磁场B(x),如图3所示;磁场B(t)和B(x)的方向均竖直向上。在圆弧导轨最上端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路,金属棒由静止开始下滑时左段磁场B(t)开始变化,金属棒与导轨始终接触良好,经过时间t0金属棒恰好滑到圆弧导轨底端。已知金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g.(1)求金属棒在圆弧轨道上滑动过程中,回路中产生的感应电动势E;(2)如果根据已知条件,金属棒能离开右段磁场B(x)区域,离开时的速度为v,求金属棒从开始滑动到离开右段磁场过程中产生的焦耳热Q;(3)如果根据已知条件,金属棒滑行到x=x1位置时停下来,a.求金属棒在水平轨道上滑动过程中通过导体棒的电荷量q;b.通过计算,确定金属棒在全部运动过程中感应电流最大时的位置。