(14分)半径为r的绝缘光滑圆环固定在竖直平面内,环上套有一质量为m、带正电的珠子,空间存在水平向右的匀强电场,如图14所示.珠子所受静电力是其重力的倍,将珠子从环上最低位置A点由静止释放,求:(1)珠子所能获得的最大动能是多少?(2)珠子对圆环的最大压力是多少? 图14
在如图所示的电路中,已知电源电动势E="3" V,内电阻r=1Ω,电阻R1=2Ω,滑动变阻器R的阻值可连续增大,问:(1)当R多大时,R消耗的功率最大?最大功率为多少? 当R消耗功率最大时电源的效率是多少?(2)当R多大时,R1消耗的功率最大?最大功率为多少?(3)当R为多大时,电源的输出功率最大?最大为多少?
如图,BC为半径等于R=竖直放置的光滑细圆管,O为细圆管的圆心,BO与竖直线的夹角为45°;在圆管的末端C连接一光滑水平面,水平面上一质量为M=1.5kg的木块与一轻质弹簧拴接,轻弹簧的另一端固定于竖直墙壁上.现有一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球从进入圆管开始即受到始终竖直向上的力F=5N的作用,当小球运动到圆管的末端C时作用力F立即消失.小球过后与木块发生完全非弹性碰撞(g=10m/s2).求:(1)小球在A点水平抛出的初速度v0;(2)在圆管运动中圆管对小球的支持力N;(3)弹簧的最大弹性势能EP.
如图所示,两根足够长的光滑金属导轨MN、PQ间距为L=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°角。完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止。取g=10m/s2,问:(1)通过cd棒的电流I是多少,方向如何?(2)棒ab受到的力F多大?(3)力F的功率P是多少?
如图所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直。一质量为m、电荷量为-q(q>0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场。已知OP=L,OQ=2L。不计重力。求:(1)粒子从P点入射的速度v0的大小;(2)匀强磁场的磁感应强度B的大小。
我国发射的“嫦娥一号”卫星发射后首先进入绕地球运行的“停泊轨道”,通过加速再进入椭圆“过渡轨道”,该轨道离地心最近距离为L1,最远距离为L2,卫星快要到达月球时,依靠火箭的反向助推器减速,被月球引力“俘获”后,成为环月球卫星,最终在离月心距离L3的“绕月轨道”上飞行,如图所示.已知地球半径为R,月球半径为r,地球表面重力加速度为g,月球表面的重力加速度为,求:(1)卫星在“停泊轨道”上运行的线速度大小;(2)卫星在“绕月轨道”上运行的线速度大小;(3)假定卫星在“绕月轨道”上运行的周期为T,卫星轨道平面与地月连心线共面,求在该一个周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间(忽略月球绕地球转动对遮挡时间的影响).