如图所示,小球A从半径为R=0.8 m的1/4光滑圆弧轨道的上端点以v0=3 m/s的初速度开始滑下,到达光滑水平面上以后,与静止于该水平面上的钢块B发生碰撞,碰撞后小球A被反向弹回,沿原路进入轨道运动恰能上升到它下滑时的出发点(此时速度为零).设A、B碰撞机械能不损失,g取10 m/s2,求:(1)小球A刚滑上水平面的速度.(2)A和B的质量之比.
如图所示,有一质量M="2" kg的平板小车静止在光滑水平面上,小物块A 、B 静止在板上的C 点,A 、B间绝缘且夹有少量炸药。已知mA=2 kg,mB=1kg,A 、B 与小车间的动摩擦因数均为μ=0.2。A 带负电,电量为q , B 不带电。平板车所在区域有范围很大的、垂直纸面向里的匀强磁场,磁感应强度为B,且电荷量与磁感应强度q.B="10" N·s / m .炸药瞬间爆炸后释放的能量为12 J,并全部转化为A 、B的动能,使得A 向左运动,B 向右运动.取g=10 m/s2,小车足够长,求:(1)分析说明爆炸后AB的运动情况(请描述加速度、速度的变化情况)(2)B在小车上滑行的距离。
静止的氮核被速度是v0的中子击中生成甲、乙两核。已知甲、乙两核的速度方向同碰撞前中子的速度方向一致,甲、乙两核动量之比为1:1,动能之比为1:4,它们沿垂直磁场方向进入匀强磁场做圆周运动,其半径之比为1:6。问:甲、乙各是什么核?写出核反应方程(写出详细的计算过程)。
放在光滑水平面上的物体A和B之间用一个弹簧相连,一颗水平飞行的子弹沿着AB连线击中A,并留在其中,若A、B、子弹质量分别为mA、mB、m,子弹击中A之前的速度为v0,要求求解以后过程中弹簧的最大弹性势能。某同学给出了如下的解题过程:三者速度相等时弹性势能最大,由动量守恒得:还列出了能量守恒方程: 并据此得出结论。你认为这位同学的解题过程正确吗?如正确,请求出最大弹性势能的表达式;如果错误,请你书写正确的求解过程并解出最大弹性势能.
已知氢原子基态的电子轨道为r1=0.528×10-10 m,量子数为n的能级值为(1)求电子在基态轨道上运动时的动能. (2)有一群氢原子处于量子数n=3的激发态.在图上用箭头标明这些氢原子能发出哪几条光谱线.(3)计算这几条光谱线中波长最短的一条的波长(第三问保留一位有效数字).(其中静电力恒量k=9.0×109 N·m2/C2,电子电量e=1.6×10-19 C,普朗克恒量h=6.63×10-34 J·s,真空中光速c=3.0×108 m/s)
如图所示,AB为固定在竖直平面内的光滑圆弧轨道,轨道的B点与水平地面相切,其半径为R.质量为m的小球由A点静止释放,求:(1)小球滑到最低点B时,小球速度v的大小及小球对轨道的压力F压的大小;(2)小球通过光滑的水平面BC滑上固定曲面,恰达最高点D,D到地面的高度为h(已知h<R),则小球在曲面上克服摩擦力所做的功Wf.