如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R,一质量为m的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。要求物块恰好能通过圆形轨道最高点,求物块初始位置相对于圆形轨道底部的高度h。
如图所示,质量为m=50g,长l=10cm的铜棒,用长度相等的两根轻软导线悬吊在竖直向上的匀强磁场中,导线跟铜棒的接触良好,磁感应强度B=0.5T。当导线中通入某恒定电流后,铜棒恰好偏离竖直方向37°而静止。求:铜棒中所通恒定电流的大小和方向。(g=10m/s2)
水平固定的两个足够长的平行光滑杆MN、PQ,两者之间的间距为L,两光滑杆上分别穿有一个质量分别为MA=0.1kg和MB=0.2kg的小球A、B,两小球之间用一根自然长度也为L的轻质橡皮绳相连接,开始时两小球处于静止状态,如图(a)所示。现给小球A一沿杆向右的水平速度,以向右为速度正方向,以小球A获得速度开始计时得到A球的v-t图象如图(b)所示。(以后的运动中橡皮绳的伸长均不超过其弹性限度。)(1)在图(b)中画出一个周期内B球的v-t图象(不需要推导过程);(2)若在A球的左侧较远处还有另一质量为MC=0.1kg粘性小球C,当它遇到小球A,即能与之结合在一起。某一时刻开始C球以4m/s的速度向右匀速运动,在A的速度为向右大小为时,C遇到小球A,则此后橡皮绳的最大弹性势能为多少?(3)C球仍以4m/s的速度向右匀速运动,试定量分析在C与A相遇的各种可能情况下橡皮绳的最大弹性势能。
如图,长 ,高h=1.25m,质量M=30kg的小车在水平路面上行驶,车与路面的动摩擦因数,当速度时,把一质量为m=20kg的铁块轻轻地放在车的前端(铁块视为质点),铁块与车上板间动摩擦因数,问:()(1) 铁块与小车分离时铁块和小车的速度分别为多少?(2) 铁块着地时距车的尾端多远?
有一质量为m的航天器靠近地球表面绕地球作匀速圆周运动(轨道半径等于地球半径),某时刻航天器启动发动机,向后喷气,在很短的时间内动能变为原来的,此后轨道变为椭圆,远地点与近地点距地心的距离之比是2:1,经过远地点和经过近地点的速度之比为1:2。己知地球半径为R,地球表面重力加速度为g。(1)求航天器在靠近地球表面绕地球作圆周运动时的周期T;(2)求航天器靠近地球表面绕地球作圆周运动时的动能;(3)在从近地点运动到远地点的过程中克服地球引力所做的功为多少?
如图所示为放置在竖直平面内游戏滑轨的模拟装置,滑轨由四部分粗细均匀的金属杆组成,其中倾斜直轨AB与水平直轨CD长均为L=3m,圆弧形轨道APD和BQC均光滑,BQC的半径为r=1m,APD的半径为R=2m,AB、CD与两圆弧形轨道相切,O2A、O1B与竖直方向的夹角均为q=37°。现有一质量为m=1kg的小球穿在滑轨上,以Ek0的初动能从B点开始沿AB向上运动,小球与两段直轨道间的动摩擦因数均为μ=,设小球经过轨道连接处均无能量损失。(g=10m/s2,sin37°=0.6,cos37°=0.8),求:(1)要使小球完成一周运动回到B点,初动能EK0至少多大?(2)若以题(1)中求得的最小初动能EK0从B点向上运动,求小球第二次到达D点时的动能;(3)若以题(1)中求得的最小初动能EK0从B点向上运动,求小球在CD段上运动的总路程。