如图甲所示,两根足够长的平行光滑金属导轨固定放置在水平面上,间距L=0.2m,一端通过导线与阻值为R=1Ω的电阻连接;导轨上放一质量为m=0.5kg的金属杆,金属杆与导轨的电阻均忽略不计.整个装置处于竖直向上的大小为B=0.5T的匀强磁场中.现用与导轨平行的拉力F作用在金属杆上,金属杆运动的v-t图象如图乙所示.(取重力加速度g=10m/s2)求:(1)t=10s时拉力的大小及电路的发热功率.(2)在0~10s内,通过电阻R上的电量.
如图,在xOy平面第一象限整个区域分布一匀 强电场,电场方向平行y轴向下.在第四象限内存在一有界匀强磁场,左边界为y轴,右边界为x=5l的直线, 磁场方向垂直纸面向外.一质量为m、带电荷量为+q的粒子从y轴上P点以初速度v0垂直y轴射人匀强电场,在电场力作用下从x轴上Q点以与x轴正方向成450角进入匀强磁场.已知OQ=l,不计粒子重力.求:(1)P点的纵坐标;(2)要使粒子能再次进入电场,磁感应强度B的取值范围.
在竖直平面内固定一轨道ABCO,AB段水平放置,长为4m,BCO段弯曲且光滑,轨道在O点的曲率半径(以O处一小段圆弧的圆的半径)1.5m;一质量为1.0kg、可视作质点的圆环套在轨道上,圆环与轨道AB段间的动摩擦因数为μ=0.5。建立如图所示的直角坐标系,圆环在沿x轴正方向的恒力F作用下,从A( 7,2)点由静止开始运动,到达原点O时撤去恒力F,水平飞出后经过D(6,3)点。重力加速度g取10m/s2,不计空气阻力。求:⑴圆环到达O点时对轨道的压力;⑵恒力F的大小;
在勇气号火星探测器着陆的最后阶段,着陆器降落到火星表面上,再经过多次弹跳才停下来。假设着陆器第一次落到火星表面弹起后,到达最高点时高度为h,速度方向是水平的,速度大小为v0,求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力。已知火星的一个卫星的圆轨道的半径为r,周期为T。火星可视为半径为r0的均匀球体。
质量为m=1kg的小物块轻轻放在水平匀速运动的传送带上的P点,随传送带运动到A点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B点进入竖直光滑圆孤轨道下滑。B.C为圆弧的两端点,其连线水平。已知圆弧半径R=1.0m圆弧对应圆心角,轨道最低点为O,A点距水平面的高度h=0.8m。小物块离开C点后恰能无碰撞的沿固定斜面向上运动,0.8s后经过D点,物块与斜面间的滑动摩擦因数为=(g=10m/s2,sin37°=0.6,cos37°=0.8)试求:(1)小物块离开A点的水平初速度v1(2)假设小物块与传送带间的动摩擦因数为0.3,传送带的速度为5m/s,则PA间的距离是多少?(3)小物块经过O点时对轨道的压力(4)斜面上CD间的距离
如图所示,小球甲从倾角θ=30°的光滑斜面上高h=5 cm的A点由静止释放,小球甲沿斜面向下做匀加速直线运动,加速度大小是5 m/s2,同时小球乙自C点以速度v0沿光滑水平面向左匀速运动,C点与斜面底端B处的距离L=0.4 m.甲滑下后能沿斜面底部的光滑小圆弧平稳地朝乙追去,甲释放后经过t=1 s刚好追上乙,求乙的速度v0.